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a b s t r a c t

We characterize tenable Pólya urn schemes via a decomposition of their replacement
matrices into small submatrices with certain conditions on the determinants. The char-
acterization also involves an interplay between the submatrices and the initial conditions,
as well as certain divisibility conditions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A Pólya urn scheme consists of a container that has τn balls present at the nth step, and each ball can be any of k > 0
possible colors. The color of an individual ball does not change. The dynamics of the system are attributed to the addition or
removal of balls, into or out of the system. An urn scheme consists of four (repeated) steps:

1. Drawing a ball out of the urn, uniformly at random;
2. Noting the color i of the ball, where i ∈ {1, 2, . . . , k};
3. Placing the ball back into the urn;
4. Utilizing a set of rules for changing the quantities of balls in the urn, according to a replacement matrix A, depending

on the color of the selected ball.

This urn scheme has been well studied. The origins of the scheme can be traced back (at least) as far as 1977 in the works
of Johnson and Kotz (1977). If the steps can be repeated indefinitely – without running out of all colors simultaneously, and
without having insufficient numbers of balls for the required replacements – the urn scheme is called tenable. If at least
one path exists in which the urn scheme cannot satisfy the replacement matrix rules, or in which the total number of balls
reaches 0, then the urn scheme is untenable. A state in which the replacement matrix rules cannot successfully be applied is
known as an untenable state.

The scheme begins with a vector X0 = (X0,1, . . . , X0,k). The variable X0,i denotes the initial number of balls of color i in
the urn. We use τ0 :=

∑
iX0,i to denote the total number of balls in the urn at the start. The replacement matrix A is of size

k × k. The entry Ai,j (on the ith row and jth column) denotes the number of balls of color j that are added to the urn, when a
ball of color i is drawn (Mahmoud, 2003). All Pólya urn schemes are composed of two elements: the initial conditions, X0,
and the replacement matrix, A, written (X0,A).

It is of interest to characterize and identify the unique starting conditions and replacementmatrix rule conditions thatwill
encompass all tenable urns. This paper characterizes such tenable urn schemes throughmathematically necessary conditions
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for tenability. This characterization can quickly pinpoint if amodel is tenable, where an untenablemodel is getting stuck, and
how untenable models can be adjusted to become tenable. Furthermore, these results can be extended to find the smallest
change to an untenable urn scheme that will result in a tenable urn, and lays the foundation for an if and only if statement
for all tenable urns.

The Pólya–Eggenberger urn (Johnson andKotz, 1977) is an example of a tenable urn scheme involving two colors,whereas
the Pills Problem (Hwang et al., 2007) is an untenable urn scheme involving two colors. Mahmoud (1997) describes an urn
model representing binary trees using three colors, and Mahmoud and Smythe (1992) use four different colored balls to
represent the placement of a node inside a tree. Further, Yamato (1993), Holst (1979), Janson (2003), and Athreya and Karlin
(1968) describe urnmodels using multiple colors. It is therefore of interest when studying urnmodels to not restrict the urn
to two colors, but to generalize to an urn with up to k colors.

With the vast use of urn models in different disciplines, it is of interest to examine the structure of urn models. Using
characteristics such as the entries in the replacement matrix, growth or decay over time, and number of balls added on
each draw, many categories of urns have been studied. Balanced urns, in which the number of balls in the urn remains
constant, have been very well-studied; see, for instance, Bagchi and Pal (1985), Bai and Hu (1999), Flajolet et al. (2005),
Gouet (1989) and Mahmoud (2009). Many subcategories of urn models have been developed including: sacrificial urns
(and semi-sacrificial urns) (Flajolet et al., 2006), elliptic urns (Flajolet et al., 2005), and triangular urns (Janson, 2006)
(which also appears as part of Flajolet et al., 2005). Models have also been studied in which the number of balls in the urn is
diminishing (Kuba and Panholzer, 2010).

Each of these current categorizations are defined only using the replacement matrix A. There exists a much broader
category of urns known as tenable urn schemes, that requires knowledge of both the replacement matrix A and the initial
conditions X0 (Janson, 2003; Johnson and Kotz, 1977; Mahmoud, 2003, 2009). This paper looks to characterize all tenable
urn schemes.

2. Tenable urns

We use Xn,i to denote the number of balls of color i at the nth step. If (X0,A) is an urn scheme, we need to have Xn,i ≥ 0
for all n and i to maintain tenability, i.e., we can never have a negative number of balls of color i in the urn. Additionally, a
tenable urn needs at least one ball present at all times. Therefore the number of balls τn that are in the urn at the nth step
needs to satisfy τn :=

∑
iXn,i ≥ 1.

Suppose that an urn scheme (X0,A) begins with at least one ball (i.e., τ0 > 0), and all elements of the replacement
matrix are non-negative, i.e., Ai,j ≥ 0 ∀ i, j. The urn scheme (X0,A) is tenable, as the number of balls for all colors is always
non-decreasing, and therefore will never reach an untenable state. Therefore, tenability is only in question if at least one
element in A is negative. For this reason, all characterizations that follow focus on negative values in A and conditions
needed to maintain tenability in such instances. Specifically, there are three categorizations of negatives occurring in the
replacement matrix: negative entries occurring on the diagonal elements (i.e., Ai,i), negative entries occurring in the same
column (i.e., A∗,i), and negative entries occurring in the same row (i.e., Ai,∗).

2.1. All essentiality

For a given urn scheme (X0,A), if color i never appears in the urn, i.e., if Xn,i = 0 ∀ n, then row i of the replacement matrix
(i.e., Ai,∗), becomes irrelevant. The rules of Ai,∗ will only be enforced if a ball of color i is chosen from the urn. As no ball of
color i ever exists in the urn, then Ai,∗ does not affect the tenability of the urn scheme. In such a case, color i is referred to as
non-essential. Conversely, a color is referred to as essential if the probability is 0 that a stochastic path will require taking out
more balls of that color than are present in the urn, and the probability is 1 that it will appear in the urn at some point n.

All-essentiality of a tenable Pólya urn scheme (X0,A) means that almost surely, any ball color will eventually appear
while drawing. One can naturally decompose a k-color tenable scheme into smaller all-essential schemes. For this reason, it
would be adequate to derive all following theorems only for all-essential schemes.

2.2. Negatives on the diagonal

The first instance of removing balls from the urn due to negative values in the replacement matrix that will be explored
is the removal of balls of the same color as the ball drawn. In other words, a negative value on a diagonal element of the
replacement matrix (i.e., Ai,i < 0).

Theorem 1 (Gouet, 1989 and Janson, 2003). Let (X0,A) be an all-essential tenable urn and suppose there exists an i such that
Ai,i < 0. Then the starting value X0,i is a non-negative integer multiple of |Ai,i|, and each Aℓ,i is an integer multiple of |Ai,i|.

2.3. Negatives in the same column

The next instance of removing balls from the urn due to negative values in the replacement matrix involves the draw of
a ball of color i requiring the removal of balls of color i from the urn, as well as the draw of a ball of color j requiring the
removal of balls of color i. In the replacement matrix (i.e., Ai,j < 0).
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Theorem 2. Let (X0,A) be an all-essential tenable urn scheme such that Ai,i < 0 and Aj,i < 0, then

1. Aj,j < 0,
2. Ai,i = Aj,i and Ai,j = Aj,j, and
3. det

(
Ai,i Ai,j
X0,i X0,j

)
= 0.

4. If, in addition, there exists an ℓ such that Aℓ,i ≥ 0, then det
(
Ai,i Ai,j
Aℓ,i Aℓ,j

)
= 0.

5. If, in addition, there exists an ℓ such that Aℓ,i < 0, then Aℓ,j = Aj,j and Aℓ,ℓ = Aj,ℓ.

Proof. Suppose that Aj,j is nonnegative. As color j is essential, there exists an n such that Xn,j > 0. After ⌊
Xn,i
|Aj,i|

⌋+1 consecutive
draws of a ball of color j, the urn will reach an untenable state. Therefore, Aj,j < 0.

Suppose that Ai,i ̸= Aj,i and without loss of generality, |Aj,i| < |Ai,i|. It is possible to draw Xn,j
|Aj,j|

− 1 balls of color j, after
which there will be |Aj,i| < |Ai,i| balls of color i remaining in the urn. Upon drawing a ball of color i, the urn scheme will
reach a state of untenability, as the drawing of such a ball requires the removal of |Ai,i| > |Aj,i| balls of color i, while only
|Aj,i| remain. Therefore Ai,i = Aj,i, and a similar argument can be used to also show that Ai,j = Aj,j.

From Theorem 1, there exists mi such that Xn,i = mi|Ai,i|, and similarly there exists mj such that Xn,j = mj|Aj,j|. Since
Ai,j = Aj,j, then Xn,j = mj|Ai,j|. Suppose mi ̸= mj, and without loss of generality, mi < mj. It is then possible to have
mi consecutive draws of balls of color i, after which all balls of color i would be depleted from the urn, however, not all
balls of color j would be depleted from the urn, which has already been shown cannot occur for a tenable urn. Therefore,
mi =

Xn,i
|Ai,i|

=
Xn,j
|Ai,j|

= mj, or equivalently, det
(

Ai,i Ai,j
X0,i X0,j

)
= 0.

If the draw of a ball of color ℓ adds balls of either color i or j, in other words either Aℓ,i > 0 or Aℓ,j > 0, the condition that
balls of color i occur in the urn if and only if balls of color j occur in the urn must continue to hold. A similar argument can
be used to show that det

(
Ai,i Ai,j
Aℓ,i Aℓ,j

)
= 0as was used to show det

(
Ai,i Ai,j
X0,i X0,j

)
= 0.

Suppose Aℓ,i < 0 and (without loss of generality) |Aℓ,j| < |Aj,j|. Then it is possible to draw balls of color ℓ consecutively
until all balls of color ℓ and i are depleted from the urn, however, not depleting all balls of color j, as has been shown is
not possible with a tenable urn scheme. Therefore, if Aℓ,i < 0, Aℓ,j = Aj,j and a similar argument can be used to show
Aℓ,ℓ = Aj,ℓ. □

2.4. Negatives in the same row

The last instance of negative values occurring in the replacementmatrix include negative values that are in the same row.

Theorem 3. Let (X0,A) be an all-essential tenable urn scheme where Ai,i < 0, Ai,j < 0, and Aj,i ≥ 0. In such a case,
det

(
Ai,i Ai,j
Xn,i Xn,j

)
≤ 0 and det

(
Ai,i Ai,j
Aj,i Aj,j

)
≤ 0.

Proof. The urn must start with enough balls of colors i and j such that if balls of color i are drawn consecutively, the urn will
not be depleted of balls of color j prior to being depleted of balls of color i.

At any time n, it is possible to have Xn,i
|Ai,i|

consecutive draws of balls of color i, resulting in the removal of Xn,i
|Ai,i|

|Ai,j| balls

of color j from the urn. If Xn,j <
Xn,i
Ai,i

Ai,j, then the urn will reach a state of untenability. Therefore, Xn,j ≥
Xn,i
Ai,i

Ai,j which is

equivalent to det
(
Ai,i Ai,j
Xn,i Xn,j

)
≤ 0.

A similar argument can then be used to show Aj,j ≥
Aj,i
|Ai,i|

Ai,j, which is equivalent to det
(
Ai,i Ai,j
Aj,i Aj,j

)
≤ 0. □

Theorem 4. Let (X0,A) be an all-essential tenable urn scheme where Ai,i < 0, Ai,j < 0, and Aj,i ≥ 0. If Aℓ,ℓ ≥ 0 or if Aℓ,ℓ < 0
but the product Ai,ℓAℓ,i ̸= 0, then det

(
Ai,i Ai,j
Aℓ,i Aℓ,j

)
≤ 0.

Proof. A draw of a ball of color ℓ provides the possibility of an additional Aℓ,i
|Ai,i|

consecutive draws of a ball of color i from

the urn, which in turn would remove Aℓ,i
|Ai,i|

|Ai,j| balls of color j from the urn. Therefore Aℓ,j ≥
Aℓ,i
|Ai,i|

|Ai,j|, which is equivalent to

det
(
Ai,i Ai,j
Aℓ,i Aℓ,j

)
≤ 0. □

The conditions of Theorem 4 may at first seem extraneous; however, additional urn schemes are also tenable when
Aℓ,ℓ < 0 and Ai,ℓAℓ,i = 0, but where det

(
Ai,i Ai,j
Aℓ,i Aℓ,j

)
> 0 such as the following urn scheme:

(X0,A) =

((W0 = 1
B0 = 3
R0 = 1

)
,

(
−1 −1 0
3 4 0
1 0 −1

))
.

Therefore, additional requirements must be specified to account for such urn schemes.
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Theorem 5. Let (X0,A) be an all-essential tenable urn scheme where Ai,i < 0, Ai,j < 0, and Aj,i ≥ 0. If Aℓ,ℓ < 0, Ai,ℓAℓ,i = 0,

and det
(
Ai,i Ai,j
Aℓ,i Aℓ,j

)
> 0, then det

(
Ai,i Ai,j Ai,ℓ
Aj,i Aj,j Aj,ℓ
Aℓ,i Aℓ,j Aℓ,ℓ

)
≥ 0 and det

(
Ai,i Ai,j Ai,ℓ
Xn,i Xn,j Xn,ℓ
Aℓ,i Aℓ,j Aℓ,ℓ

)
≥ 0.

Proof. As Ai,i < 0, drawing consecutive balls of color i will eventually deplete balls of color i from the urn. The same is true
for color ℓ, as Aℓ,ℓ < 0.

Focusing only on balls of color i and ℓ for themoment, if Ai,ℓAℓ,i ̸= 0, (both quantities being positive), it would be possible
to draw balls of colors i and ℓ ad infimum, as a draw of one color would add at least one ball of the other color, preventing the
urn from being depleted of both colors simultaneously. If Ai,ℓAℓ,i = 0, there remains a finite number of consecutive draws
of colors i and ℓ possible before all balls of colors i and ℓ are removed from the urn.

Expanding the scope to look at balls of color j, a draw of a ball of color i requires the removal of balls of color j, and a draw
of a ball of color ℓ from the urn has the potential to add more balls of color i to the urn. The goal is to make sure that after all
balls of colors i and ℓ have been removed from the urn, starting at time n, the total number of balls of color j removed (call
this quantityR) does not exceed the total number of balls of color j remaining in the urn (call this quantity J ). The quantity
J consists of the initial number of balls of color j in the urn at time n, Xn,j, in addition to the following two quantities.

1. The number of balls of color j added to the urn if Xn,ℓ
|Aℓ,ℓ|

balls of color ℓ are drawn consecutively from time n until all

balls of color ℓ are removed from the urn, Xn,ℓ
|Aℓ,ℓ|

Aℓ,j.
2. The number of balls of color j added to the urn after all balls of color i are removed from the urn by consecutively

drawing balls of color i from the urn, (which could add additional balls of color ℓ into the urn), and then all subsequent
balls of color ℓ are removed by consecutively drawing balls of color ℓ,

(
Xn,i
|Ai,i|

Ai,ℓ
|Aℓ,ℓ|

)
Aℓ,j.

Thus, J = Xn,j +

(
Xn,ℓ
|Aℓ,ℓ|

+
Xn,i
|Ai,i|

Ai,ℓ
|Aℓ,ℓ|

)
Aℓ,j.

The quantity R is composed of two parts:

1. The number of balls of color j removed after all balls of color i are removed from the urn by consecutively drawing balls
of color i from the urn, Xn,i

|Ai,i|
|Ai,j|.

2. The number of balls of color j removed after all balls of color ℓ are removed from the urn by consecutively drawing
balls of color ℓ from the urn, (which could add additional balls of color i into the urn), and then all subsequent balls of
color i are removed by consecutively drawing balls of color i,

(
Xn,ℓ
|Aℓ,ℓ|

Aℓ,i
|Ai,i|

)
|Ai,j|.

Thus, R =

(
Xn,i
|Ai,i|

+
Xn,ℓ
|Aℓ,ℓ|

Aℓ,i
|Ai,i|

)
|Ai,j|.

Therefore the following equation must be satisfied:(
Xn,i

|Ai,i|
+

Xn,ℓ

|Aℓ,ℓ|

Aℓ,i

|Ai,i|

)
|Ai,j| ≤ Xn,j +

(
Xn,ℓ

|Aℓ,ℓ|
+

Xn,i

|Ai,i|

Ai,ℓ

|Aℓ,ℓ|

)
Aℓ,j.

This is equivalent to

det

(Ai,i Ai,j Ai,ℓ
Xn,i Xn,j Xn,ℓ
Aℓ,i Aℓ,j Aℓ,ℓ

)
≥ 0.

The same argument follows for the values of the replacementmatrixAj,i, Aj,j, Aj,ℓ, replacingXn,i, Xn,j, Xn,ℓ, respectively. □

Suppose there exists an urn scheme for which the conditions of Theorem 5 are met, but a draw of a ball of color m adds
additional balls of color ℓ to the urn, Am,ℓ > 0. The theorem that follows outlines characteristics of a tenable urn scheme
where it is possible for the urn to always have at least one ball of either color i, ℓ, or m. In other words, there exists at least
one stochastic path for which the urn is never void of all three colors (i, ℓ, andm) of balls simultaneously.

Theorem 6. Let (X0,A) be an all-essential tenable urn scheme where Ai,i < 0, Ai,j < 0, and Aj,i ≥ 0. In addition, let Aℓ,ℓ < 0,
Ai,ℓAℓ,i = 0, and det

(
Ai,i Ai,j
Aℓ,i Aℓ,j

)
> 0. If Am,ℓ > 0, and Am, m > 0, or Am, m < 0 but Aℓ, m > 0, or Am, m < 0 but Ai, m > 0, then

det
(

Ai,i Ai,j Ai,ℓ
Aℓ,i Aℓ,j Aℓ,ℓ

Am,i Am,j Am,ℓ

)
≤ 0.

Proof. In the scenario described, a draw of a ball of color i or ℓ has the same impact on the number of balls of color j in
the urn as seen in Theorem 5, with the added complexity of an additional ball color, m, that allows balls of color i or ℓ to be
drawn ad infimum. Either colorm always exists in the urn, or a draw of color ℓ adds additional balls of colorm into the urn,
or a draw of a ball of color i adds additional balls of color m to the urn. Therefore, each draw of a ball of color m, must add
enough balls of color j to counteract balls of color j that are removed from drawing balls of colors i and ℓ.
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The total number of additional balls of color j that are removed from the urn by drawing balls of colors i or ℓ that have
been added to the urn by a draw of a ball of colorm, id denoted by the quantity R =

(
Am,i
|Ai,i|

+
Am,ℓ

|Aℓ,ℓ|

Aℓ,i
|Ai,i|

)
|Ai,j|.

The total number of balls of color j that are added to the urn as a result of drawing a ball of colorm, and then any additional
balls of color j that are added after consecutively drawing all balls of color ℓ that have been added as a result of drawing a
ball of colorm, is denoted by the quantity J = Am,j +

Am,ℓ

|Aℓ,ℓ|
Aℓ,j.

To be tenable, we need R ≤ J , which yields:(
Am,i

|Ai,i|
+

Am,ℓ

|Aℓ,ℓ|

Aℓ,i

|Ai,i|

)
|Ai,j| ≤ Am,j +

Am,ℓ

|Aℓ,ℓ|
Aℓ,j.

The inequality can be expressed as:

Am,iAi,jAℓ,ℓ − Am,ℓAℓ,iAi,j − Am,jAi,iAℓ,ℓ + Am,ℓAℓ,jAi,i ≤ 0

and therefore

det

( Ai,i Ai,j Ai,ℓ
Aℓ,i Aℓ,j Aℓ,ℓ

Am,i Am,j Am,ℓ

)
≤ 0. □

There exists a specific case that is not covered in Theorem 6, and which acts in the same way as the case specified in
Theorem 5. In the case referred to in Theorem 5, the urn was eventually void of colors i and ℓ simultaneously. In a similar
manner, the following example will eventually be depleted of colors i, ℓ, andm simultaneously, providing a case not covered
by Theorem 6.

(X0,A) =

⎛⎜⎝
⎛⎜⎝W0 = 1

B0 = 3
R0 = 1
Y0 = 1

⎞⎟⎠ ,

⎛⎜⎝−1 −1 0 0
3 4 0 0
1 0 −1 0
1 0 1 −1

⎞⎟⎠
⎞⎟⎠ .

Thus, Theorem 5 can be generalized to any sequence of colors S for which drawing balls of these colors (in any order)
will eventually add additional balls of color i into the urn, where the consecutive drawing of the sequence of colors will also
result in the simultaneous removal of all colors in said sequence.

Without loss of generality, the urn scheme (X0,A) can be ordered in such a way that i = 1, j = 2, and S ⊆ {3, 4, . . . , k},
where there are s colors included in the subset S. Additionally, let X({i, j, S}) be the elements Xn,i, Xn,j, Xn,s1 , and so on. This
notation will be used to simplify the following determinant inequality:

det

(Ai,i Ai,j Ai,ℓ
Xn,i Xn,j Xn,ℓ
Aℓ,i Aℓ,j Aℓ,ℓ

)
≥ 0 is equivalent to det(A({i,X({i, j, ℓ}), ℓ})) ≥ 0.

Theorem 7. Let (X0,A) be an all-essential tenable urn scheme where Ai,i < 0, Aj,i < 0, and Aj,i ≥ 0. If there exists si ∈ S such
that Asi,i > 0, and ∀ si ∈ S, Asi,si < 0, Asi,sj ∗ Asj,si = 0, and Ai,si = 0 then the following inequalities hold:

• (−1)s+2 det(A{i, j, S}) ≤ 0,
• (−1)s+2 det(A{i,X({i, j, S}), S}) ≤ 0.

The details of this proof are left to the reader, as they mirror earlier arguments.

3. Sufficient conditions and future research

The theorems outlined in this paper are the necessary conditions for tenability and assume an urn is tenable, therefore it
cannot reach an empty state. The sufficient conditions will therefore require not only the theorems outlined in this paper,
but also additional conditions that will prevent the urn from reaching an empty state.

An example illustrating this point is the urn scheme (X0,A) =

((
W0 = 2
B0 = 0

)
,

(
−2 0
2 0

))
. This urn scheme does not violate

Theorem 1, yet is not tenable as after the first draw of a ball and the conditions that follow, the urn scheme is rendered
empty.

For an urn to always have at least one ball, the urn scheme must have at least one essential color. One must therefore
determine the characteristics of (X0,A) required for a color to be considered essential. In general, color i is essential if Ai,i ≥ 0
and either X0,i > 0 or ∃ j | Aj,i > 0 where Xj,n > 0 for some time n. If Ai,i < 0 color i is essential if ∃ j | Aj,i > 0 where color j
is an essential color.

Additionally, there are certain rows in A that need not follow the conditions laid out in this paper; namely, a color m
that never appears in the urn. If color m never appears in the urn, in order for the urn to be tenable, Xn, m = 0 for all n and
Ai, m = 0 for all i such that Xi,n > 0 for some time n. All values of Am,∗ and Aj, m for all j that also never appear in the urn,
need not follow the conditions laid out in this paper, as these conditions will never be invoked.

For brevity of this paper, additional details regarding specific sufficient conditions are left for future research.
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