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ABSTRACT
We use analytic methods to study the probability of a family of motifs not occurring on the fringe of
a random recursive tree. We obtain an asymptotic formula for this probability by means of singularity
analysis. Two regimes are treated in particular: the case that a fixed proportion of motifs of size γ is
forbidden, and the case that a fixed number of motifs of size γ is forbidden. In both cases, we observe
phase transitions as the size of the random tree and the size of the motif tend to infinity. The required
asymptotic expansions of the dominant singularities were first found by computer experiments and
only later made rigorous.

1. Introduction

A recursive tree is a randomly generated, rooted, non-
planar tree that is constructed by the insertion of nodes
labeled 1, 2, 3, ... Node 1 is the root. Every subsequent
node is inserted (uniformly, at random) as a child of one of
the earlier nodes. Under this probability model, we have
(n− 1)! equally likely recursive trees that contain n nodes.

This stochastic model has been used to study the
growth of pyramid schemes, spread of chain letters,
recruitment schemes, and the evolution of the Union-
FindAlgorithm. A detailed survey about the various stud-
ies and applications of recursive trees is given in [Smythe
andMahmoud 95]. Some of the other studies on recursive
trees were conducted in [Dondajewski and Szymański
82], [Drmota 09], [Fuchs et al. 06], [Kuba and Pan-
holzer 08], [Mahmoud and Smythe 92], [Panholzer and
Prodinger 04], and [Pittel 94].

A motif is a (fixed) rooted, unlabeled, nonplanar tree
of size γ . Figure 1 shows all of the motifs of size 5. The
numbers of motifs of sizes 1, 2, 3, 4, 5, … are 1, 1, 2, 4,
9, …. The On-Line Encyclopedia of Integer Sequences
entry A000081 gives a great deal more information about
this sequence of data structures and related objects and
enumerations (see http://oeis.org/A000081). A subtree of
a recursive tree, rooted at a given node, includes that given
node and all of its descendants.

A motif is said to occur on the fringe of a tree if any
rooted subtree of the recursive tree takes the shape of the

CONTACT Mark Daniel Ward mdw@purdue.edu Department of Statistics, Purdue University,  North University Street, West Lafayette, Indiana, ,
USA.
Dedicated to the memory of Philippe Flajolet.

motif. For example, in Figure 2 we have a given motif of
size 3 that appears on the fringe of some recursive trees
of size 5 but does not appear on the fringe of some other
recursive trees of size 5.We emphasize that the occurrence
(or nonoccurrence) of a motif on the fringe of a recur-
sive tree is not influenced by the labeling scheme.We have
only included labels in Figure 2 on the recursive trees to
emphasize that motifs are unlabeled shapes, and recursive
trees are labeled.

Patterns in random unrooted trees have been stud-
ied in detail in [Chyzak et al. 08]. Forbidden patterns in
binary search trees have been studied in [Flajolet et al. 97].
Patterns on the fringe of recursive trees have been studied
in [Feng andMahmoud 10] and [Gopaladesikan et al. 14].
In this paper, we study the asymptotic properties of the
number of recursive trees (say, of size n) that do not have
anymembers of a family� ofmotifs, each of size γ , occur-
ring on the fringe. Dividing by (n− 1)!, this enumeration
immediately yields the probability pn of a random recur-
sive tree of size n not having any members of a family of
motifs on the fringe.

We study this probability asymptotically by means of
generating functions and singularity analysis. In partic-
ular, the location of the dominant singularity depending
on γ will be analyzed in detail. Two specific scenarios will
be of particular interest: a fixed ratio of all motifs of size
γ is forbidden, or a fixed number of motifs of size γ is
forbidden. The asymptotic expansions for the dominant
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Figure . Plot of all (rooted, unlabeled, nonplanar) motifs of size .

singularities (see Corollaries 4.1 and 4.2) were first deter-
mined from an explicit expression involving the Whit-
takerM function by means of a bootstrapping approach
that will be explained briefly in Section 3. Only later the
authors found a rigorous direct method of locating the
singularities; see Section 4.

If γ is fixed or grows only very slowly with n, it is rea-
sonable to expect the probability that a large recursive tree
avoids themotifs in� (on the fringe of the randomly gen-
erated tree) will tend to 0, i.e., pn → 0 as n → �. We will
precisely measure the rate at which this happens. As γ

grows faster with n, we will observe phase transitions in
both aforementioned scenarios.

2. Recursion for the probability

We apply a decomposition, similar to the one from [van
der Hofstad et al. 02], in which we remove the edge that
connects nodes 1 and 2. As a result, we have a subtree
rooted at 2, which we refer to as the special subtree, and we
let Un denote the size of the special subtree. The remain-
der of the tree is rooted at 1, and we refer to this tree, of
size n−Un, as the nonspecial subtree. It is well known that
Un is a discrete uniform randomvariable on {1, …,n− 1},
and that (given Un) the shape of the special subtree is
(conditionally) independent of the shape of the nonspe-
cial subtree. Moreover both of these subtrees are ran-
dom recursive trees themselves. Let An be the event that a

recursive tree of size n does not have any member of the
family � occurring on the fringe.

Remark 2.1. For n > γ , for An to occur, there are three
possibilities:

1. The nonspecial subtree has size strictly larger than
γ , and neither the special subtree nor the nonspe-
cial tree have any member of � on the fringe.

2. The nonspecial subtree has size strictly smaller
than γ , and the special subtree does not have any
member of � on the fringe.

3. The nonspecial subtree has size equal to γ , and the
special subtree does not have any member of � on
the fringe. (In this latter case, even if the nonspecial
subtree is a member of�, we observe that the orig-
inal recursive tree does not have any member of �
on the fringe, once the special subtree is brought
under consideration.)

With this remark in mind (using the three respective
cases), we can condition on the value ofUn, and we derive
the following, for n > γ :

P(An) =
n−γ−1∑
k=1

P(Un = k)P(ÂUn ∩ Ãn−Un |Un = k)

+
n−1∑

k=n−γ+1

P(Un = k)P(ÂUn |Un = k)

+ P(Un = n − γ )P(ÂUn |Un = n − γ ),

where ÂUn is the event that the special subtree does not
have any member of the family � occurring on the fringe,
and Ãn−Un is the event that the nonspecial subtree does
not have any member of � occurring on the fringe. We
use independence of ÂUn and Ãn−Un in the first case. We

Figure . Examples of recursive trees in which a given motif does, or does not, appear on the fringe.
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use the fact that Ãn−Un always occurs in the second case,
because the special subtree has size n− k, which is strictly
less than γ , in the second case. Thus, for n > γ ,

P(An) = 1
n − 1

[(n−γ−1∑
k=1

P(Âk)P(Ãn−k)

)

+
⎛⎝ n−1∑

k=n−γ+1

P(Âk)P(Ãn−k)

⎞⎠+ P(Ân−γ )

⎤⎦ ,

which simplifies to

P(An) = 1
n − 1

[(n−1∑
k=1

P(Âk)P(Ãn−k)

)

+ P(Ân−γ )(1 − P(Ãγ ))

]
. (2–1)

3. Generating function

We use pn := P(An) to denote the probability that a recur-
sive tree of size n does not have any member of the family
� occurring on the fringe. (Recall: allmembers of the fam-
ily � have size γ .) We use C(�) to denote the probability
that a recursive tree of size γ takes the shape of a motif in
the family �. ([Feng and Mahmoud 10] define C(�) in a
similar way, but only in the special case where � consists
of just one motif; our definition is more general.) Thus pj
= 1 for all j < γ , and pγ = 1 − C(�). Next we define the
probability generating function

f (z) =
∞∑
n=0

pnzn.

From (2–1), we obtain, for n > γ ,

(n − 1)pn =
(n−1∑

k=1

pkpn−k

)
+ pn−γ (1 − pγ ).

Multiplying by zn and summing over n > γ , we obtain∑
n>γ

(n − 1)pnzn

=
∑
n>γ

[(n−1∑
k=1

pkpn−k

)
+ pn−γ (1 − pγ )

]
zn.

We add
γ∑

n=1

(n − 1)pnzn

= zγ+1(γ − 1) − zγ (γ − 1) − zγ+1 + z2

(z − 1)2
+ (γ − 1)(1 − C(�))zγ

on both sides of the previous equation, and then we sim-
plify. This yields the Riccati differential equation

z f ′(z) = ( f (z))2 + (C(�)zγ − 1) f (z) − γ C(�)zγ .

(3–2)
Next we solve the equation, which is an excellent example
for both the strengths and limitations of computer alge-
bra. Maple immediately provides the solution

f (z) = 1 − kzγ

(γ − 1)!
+ α(z)

β(z)
, (3–3)

where

α(z) = z exp
(−kzγ

2γ !

)
and

β(z) = exp
(kzγ

2γ !

)
− z exp

(−kzγ

2γ !

)
− γ

√
z

γ + 1

(
γ !
k

) 1
2γ

M 1
2γ ,

γ+1
2γ

(kzγ

γ !

)
.

Here,M denotes theWhittakerM function, a classical spe-
cial function, discussed at length in [Andrews et al. 99].
They define this function in equation (4.3.2) on page 195,
as follows:

Mk,m(x) = e−x/2x
1
2+m

1F1
[ 1

2 + m − k
1 + 2mx ; x

]
,

where 1F1 is the hypergeometric function, which can be
defined in several ways, including

1F1
[
a
b ; z

]
:=

∞∑
�=0

∏�−1
i=0 (a + i)∏�−1
j=0(b+ j)

z�

�!
.

Hypergeometric functions are a key object of study in the
theory of special functions; [Andrews et al. 99] serves as
an excellent reference to this beautiful subject.

While (3–3) is explicit, it is not particularly useful for
further rigorous analysis. In particular, we need the singu-
larities of f(z), which are the zeros of β(z), and those are
quite difficult to find from the given expression (especially
if one does not only want to consider fixed values of γ ).
However, it is possible to discover an asymptotic expan-
sion by means of bootstrapping and heavy use of com-
puter algebra, which was in fact our first approach. Let us
briefly present this approach in one specific case, which
we believe to be useful on its own right.

It will be shown later (Corollary 4.1) that in the case
where C(�) = q is fixed, the dominant singularity z0
(closest to the origin) of f(z) satisfies

z0 = 1 + q
γ 2 + 3q2 − 4q

4γ 3 + 58q3 − 63q2 + 72q
72γ 4 + O(γ −5).



240 M. GOPALADESIKAN ET AL.

This was originally found as follows: z0 is the smallest zero
of

β(z) = exp
(
kzγ

2γ !

)
− z exp

(−kzγ

2γ !

)
− γ

√
z

γ + 1

(
γ !
k

) 1
2γ

M 1
2γ ,

γ+1
2γ

(
kzγ

γ !

)
.

To find this singularity z0, we can use Maple to assist. We
first define
mybeta := exp(k*z^g/2/g!)

-z*exp(-k*z^g/2/g!)
- g*sqrt(z)/(g+1)
*(g!/k)^(1/(2*g))
*WhittakerM(1/(2*g),(g+1)/
(2*g),k*z^g/g!);

We suspect the singularity z0 is near 1. A plot confirms
this suspicion:

Digits := 50:
q := 1/10:
g := ’g’:
z0 := solve( subs( k = q*

(g-1)!, mybeta), z):
plot( z0, g=1..50 );

(Notice that we are using q = 1/10 in this example,
but we emphasize that any value of qwill give comparable
results. Maple is unable to yield any such insights if we do
not specify a value for q. So we demonstrate the analysis
for q = 1/10 and emphasize that the analogous proceeds
in an similar way for other values of q.)

We check if it is, say, approximately 1/γ beyond 1; but
it is not, because the plot of (z0 − 1)/γ decreases to 0.

plot( (z0-1)*g, g=1..50 );

A quick check, however, confirms that z0 is actually on
the order of 1/γ 2 beyond 1:

plot( (z0-1)*g^2, g=1..50 );

and the leading order constant looks like q, so now we
have

z0 = 1 + q
γ 2 + o(γ −2).

In fact, we can ascertain that the next term in the asymp-
totic expansion is a constant multiple of 1/γ 3 with the fol-
lowing:

plot( (z0-1-q/g^2)*g^3, g=1..50 );

but now we are faced with finding that constant multi-
ple for the 1/γ 3 term. There are various ways to do so. For
instance, we can increase the number of digits of accu-
racy in the computation, and plot the value of this con-
stant over all possible q values:

Digits := 1000;
q := ’q’: g := 300:
plot( (evalf(solve( subs( k = q*
(g-1)!, mybeta), z)) - 1 -
q/g^2)*g^3, q=0..1 );

This allows us to see that the next term is quadratic in
q. Indeed, if we change the range above from 0 � q � 1
to using 0 � q � 2, we can see that this parabola crosses
the x-axis at q = 0 and q = 4/3, and has minimum at the
point (2/3, −1/3), so the next constant must be (3q2 −
4q)/4. This yields

z0 = 1 + q
γ 2 + 3q2 − 4q

4γ 3 + o(γ −3).

Returning to our earlier series of calculations, if we com-
pute:

Digits := 500;
q := 1/10:
g := ’g’:
plot( (z0-1-q/g^2-q*((3*q-
4)/(4*g^3))*g^4, g=1..120 );

We can see that the order of the error term is actually
�(γ −4).

By similar reasoning, we see that the next term in the
asymptotic expansion is (58q3 − 63q2 + 72q)/(72γ 4),
and the error term after incorporating this term is then
�(γ −5).

While not rigorous, it was very useful to have an
asymptotic formula like this to guide one’s intuition. This
was our first approach, and since it is both instructive and
in the spirit of the journal, we decided to keep this discus-
sion in the paper.

We now continue with the more formal approach,
which no longer uses the explicit expression (3–3).
Instead, we apply a substitution to the original differen-
tial equation (3–2), a technique that was also applied suc-
cessfully in a similar context in a paper of [Flajolet et al.
97]. Setting f (z) = 1 − zg′(z)

g(z) yields (after some simplifi-
cations) the linear differential equation

g′′(z) − C(�)zγ−1g′(z) − C(�)(γ − 1)zγ−2g(z) = 0.

for the auxiliary function g. Notice that this can also be
written as

g′′(z) − C(�)
d
dz

(zγ−1g(z)) = 0,

so g′(z) − C(�)zγ−1g(z) must be constant. Thus we are
left with a first-order linear differential equation that can
be solved by standardmethods. It turns out that the equa-
tion for g has the two linearly independent solutions

g1(z) = eC(�)zγ/γ and g2(z) = eC(�)zγ/γ

∫ z

0
e−C(�)tγ/γ dt.
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Thus we get

g(z) = eC(�)zγ/γ

(
A + B

∫ z

0
e−C(�)tγ/γ dt

)
.

Next, since we know that the expansion of f(z) starts 1+ z
+ ���, we must have g′(0)/g(0) = −1. Since g(0) = A and
g′(0) = B, this gives us B = −A, so

g(z) = AeC(�)zγ/γ

(
1 −

∫ z

0
e−C(�)tγ/γ dt

)
,

and without loss of generality we may take A = 1 (since
we are only interested in the quotient g′(z)

g(z) ). This finally
gives us

f (z) = 1 − C(�)zγ + z
g(z)

= 1 − C(�)zγ

+ ze−C(�)zγ/γ

1 − ∫ z
0 e−C(�)tγ/γ dt

, (3–4)

an expression that is much easier to work with than the
solution in terms of the WhittakerM-function.

We see that f is a meromorphic function with poles at
all solutions of the equation

I(z) =
∫ z

0
e−C(�)tγ/γ dt = 1. (3–5)

All these poles are simple, since the derivative of I(z) with
respect to z is e−C(�)zγ/γ , which is never 0. The integral can
be expressed in terms of an incomplete Gamma function,
but this will also be immaterial for us.

4. Asymptotic analysis

In order to carry out the Flajolet–Odlyzko singularity
analysis, we need information on the location of the poles
of the generating function f, i.e., the solutions to (3–5).
There is a unique positive real solution z0, since I(x) is
increasing for positive real x, with I(0) = 0 and

lim
x→∞ I(x) =

∫ ∞

0
e−C(�)tγ/γ dt = (γ /C(�))1/γ

×�(1 + 1/γ ) ≥ γ 1/γ �(1 + 1/γ ) > 1.

In the following, we prove that there is no other singular-
ity of f whose absolute value is z0 (by Pringsheim’s Theo-
rem, we know immediately that there cannot be any sin-
gularities whose absolute value is less), and we provide an
asymptotic expansion for z0 in terms of C(�) and γ .

Proposition 4.1. For every γ � 2 and every possible value
of C(�), the unique positive real solution z0 of (3–5) is the
only solution whose modulus is less than 1 + 1/γ . Setting

Table . Numerical values for small γ .

Numerical value of Smallest nonreal solutions of
Case z I(z)= 

γ = , C(�) = 1 . 2.39632 ± 2.33408i
γ = , C(�) = 1 . −.± .i
γ = , C(�) = 1/2 . −.± .i

a = C(�)/γ , we have

z0 = 1 + a
γ + 1

+ (3γ + 1)a2

2(γ + 1)(2γ + 1)

+ (29γ 3 + 32γ 2 + 10γ + 1)a3

6(γ + 1)2(2γ + 1)(3γ + 1)
+ O

(
a4

γ

)
,

where the constant implied in the O-term is absolute (inde-
pendent of a and γ ). Moreover, we have

| f (z)| = O(γ )

for |z|= 1+ 1/γ , where the O-constant does not depend on
a (or equivalently C(�)).

Remark 4.1. As can be seen from the proof that follows,
it is possible to continue the asymptotic expansion of z0
arbitrarily far.

Proof. We are looking for solutions to the equation

I(z) =
∫ z

0
e−atγ dt = 1.

The cases γ = 2 and γ = 3 are listed in Table 1. It is note-
worthy that the singularities for γ = 2, C(�) = 1 and for
γ = 3, C(�) = 1/2 also occur in the enumeration of per-
mutations avoiding a consecutive 132- or 1342-pattern;
see [Elizalde and Noy 03]. A formal proof that there are
no nonreal solutions with |z|� 1+ 1/γ in these cases can
be given by applying the argument principle: to this end,
we numerically compute the zero-counting integral

1
2π i

∮
|z|=1+1/γ

I′(z)
I(z) − 1

dz.

Since we know that its value must be an integer, the
numerical integration does not even have to be particu-
larly accurate to show that it is in fact equal to 1. It would
also be possible to give a proof in the cases γ = 2 and γ = 3
by further strengthening the arguments that we use in the
following for γ � 4, but this is somewhat tedious. More-
over, the aforementioned numerical proof seemed more
in the spirit of this journal. For more information about
the numerical computation of complex solutions, we refer
to [Kravanja and Van Barel 00].

In the following, we assume that γ � 4. Note first that
C(�) ≤ 1, so that 0 < a � 1/γ . Thus if |t| � T = 1 + 1/γ ,
we have

| − atγ | ≤ Tγ

γ
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and consequently

|1 − e−atγ | ≤ eTγ/γ − 1
Tγ/γ

· a|t|γ .

Integrating this estimate gives us, for |z| � T = 1 + 1/γ ,

|z − I(z)| =
∣∣∣ ∫ z

0

(
1 − e−atγ

)
dt
∣∣∣

≤
∫ |z|

0

eTγ/γ − 1
Tγ/γ

· auγ du

≤ eTγ/γ − 1
Tγ/γ

· 1
γ

· Tγ+1

γ + 1

= (eT
γ/γ − 1) · T

γ + 1
.

By our choice of T, we have Tγ /γ = (1 + 1/γ )γ /γ � e/γ
� e/4 and T/(γ + 1) = 1/γ . It follows that

|(z − 1) − (I(z) − 1)| = |z − I(z)| ≤ ee/γ − 1
γ

≤ ee/4 − 1
γ

<
1
γ

(4–6)

for |z| � T. Therefore, any solution of the equation I(z) =
1 with |z| � T = 1 + 1/γ must also satisfy |z − 1| < 1/γ .
Nowwe can apply Rouché’s theorem to the circle given by
|z − 1| = 1/γ : For any z on this circle, we have |z| � T =
1 + 1/γ and thus also

|(z − 1) − (I(z) − 1)| <
1
γ

= |z − 1|

by the estimate (4–6) above. It follows that the equation
I(z) = 1 has equally many solutions as the equation z =
1 inside this circle, i.e., exactly one. This solution has to
be real: we trivially have I(1) < 1, and since |I(T) − T|
< 1/γ by (4–6), we also have I(T) > T − 1/γ = 1. So by
the intermediate value theorem, the (unique) positive real
solution lies between 1 and T = 1 + 1/γ .

Next we prove the estimate for |f(z)|. If |z| = T = 1 +
1/γ , we have

|1 − C(�)zγ | ≤ 1 + Tγ < 1 + e

and (in view of (4–6))∣∣∣ ze−azγ

1 − I(z)

∣∣∣ ≤ |z|ea|z|γ
|1 − I(z)|

≤ TeaTγ

|1 − z| − |z − I(z)| ≤
5
4 · ee/4

1/γ − (ee/4 − 1)/γ
= O(γ ),

thus

f (z) = 1 − C(�)zγ + ze−azγ

1 − I(z)
= O(γ ),

which is what we wanted to prove. It remains to justify the
asymptotic formula for z0. To this end, we use the power

series expansion

I(z) =
∫ z

0
e−atγ dt =

∫ z

0

∞∑
k=0

(−1)k

k!
aktγ k dt

=
∞∑
k=0

(−1)k

(γ k + 1)k!
akzγ k+1.

We already know that we only have to consider values of
z between 1 and 1 + 1/γ , for which zγ is bounded. In this
region,

I(z) = z − a
γ + 1

zγ+1 + O
(a2

γ

)
,

and since a � 1/γ , then I(z) = z + O(a/γ ). Hence, we
conclude

1 = I(z0) = z0 + O
( a
γ

)
,

which gives us a first approximation z0 = 1 + O(a/γ ).
This can be refined by bootstrapping: we know now that
zγ+1
0 = 1 + O(a), thus

1 = I(z0) = z0 − a
γ + 1

+ O
(a2

γ

)
.

This readily gives us the first two terms:

z0 = 1 + a
γ + 1

+ O
(a2

γ

)
.

Now we can refine further:

zγ+1
0 = 1 + a + O(a2)

and consequently

1 = I(z0) = z0 − a
γ + 1

zγ+1
0 + a2

2(2γ + 1)
z2γ+1
0 + O

(a3
γ

)
= z0 − a

γ + 1
− a2

γ + 1
+ a2

2(2γ + 1)
+ O

(a3
γ

)
= z0 − a

γ + 1
− (3γ + 1)a2

2(γ + 1)(2γ + 1)
+ O

(a3
γ

)
.

This yields the third term, and further terms are obtained
by continuing the process. �

Now we are ready to apply singularity analysis. The
result is summarized in the following theorem:

Theorem 4.1. With z0 as described in Proposition 4.1, the
probability pn that a recursive tree of size n does not contain
a motif in � is asymptotically given by

pn = z−n
0 + O

(
γ

(
1 + 1

γ

)−n)
,

where the O-constant is independent of γ or C(�).

Proof. We apply singularity analysis in the meromorphic
setting;



EXPERIMENTAL MATHEMATICS 243

see Chapters IV and V of [Flajolet and Sedgewick 09].
Cauchy’s integral formula yields

pn = 1
2π i

∮
|z|=1

f (z)
zn+1 dz = − Res

z=z0

f (z)
zn+1

+ 1
2π i

∮
|z|=1+1/γ

f (z)
zn+1 dz.

The only term in f(z) that contributes to the residue is

ze−C(�)zγ/γ

1 − ∫ z
0 e−C(�)tγ/γ dt

= zI′(z)
1 − I(z)

,

and the asymptotic behavior at the pole z0 is given by

f (z) ∼ zI′(z)
1 − I(z)

∼ z0I′(z0)
−I′(z0)(z − z0)

∼ 1
1 − z/z0

as z → z0, so

Res
z=z0

f (z)
zn+1 = −z−n

0 .

Thus it only remains to estimate the integral. However, we
already know from Proposition 4.1 that |f(z)| = O(γ ) for
|z| = 1 + 1/γ . Thus∣∣∣ 1

2π i

∮
|z|=1+1/γ

f (z)
zn+1

∣∣∣ ≤
(
1 + 1

γ

)−n
max

|z|=1+1/γ
| f (z)|

= O
(
γ
(
1 + 1

γ

)−n)
,

which completes the proof. �
Remark 4.2. We obtain that

pn ∼ z−n
0 (4–7)

as n→ � for all γ < n, which may potentially go to� as
well. For γ = o(n/log n), this follows from Theorem 4.1,
since the O-term is indeed dominated by z−n

0 in this case.
For larger γ < n (in fact, as soon as γ /

√
n → ∞, see also

Theorem 4.2), the asymptotic approximation in (4–7) is
trivial, since both sides go to 1. Let us provide a simple
probabilistic proof for this fact. To this end, we determine
the expected total number of occurrences of motifs of size
γ . Thus we count recursive trees with a motif of size γ

appearing on the fringe with root node k. There are
(n−k
γ−1

)
ways to pick the labels of the other nodes, C(�)(γ − 1)!
choices for the fringe subtree itself, (n − γ − 1)! possibil-
ities for the shape of the remaining tree, and k − 1 possi-
ble nodes to which node k can be attached. Thus we end
up with a total expected value (consistent with [Feng and
Mahmoud 10] and [Gopaladesikan et al. 14]) of

1
(n − 1)!

n∑
k=2

(
n − k
γ − 1

)
C(�)(γ −1)!(n−γ −1)!(k − 1)

= C(�)n
γ (γ + 1)

.

If γ /
√
n → ∞, then this expected value goes to 0, and

thus (by the Markov inequality) the probability that any
motif of size γ (be it in � or not) appears also goes to 0.

If γ /
√
n → ∞ and γ = o(n/log n), Theorem 4.1 also

provides the following asymptotic formula for the proba-
bility that a motif of size γ actually appears:

1 − pn ∼ C(�)n
γ 2 . (4–8)

The condition that γ = o(n/log n) can be dropped again:
a similar counting argument as before shows that the
expected number of pairs of distinct fringe subtrees both
showing a motif in � is O(C(�)2n2/γ 4). This also means
that trees where at least two disjoint motifs in � appear
only contribute O(C(�)2n2/γ 4) to the mean number of
appearances, and that there are onlyO(C(�)2n2/γ 4) such
trees. Since this goes faster to 0 than C(�)n/γ 2, the main
term of the expected number of appearances must be
asymptotically equal to the probability that a motif in �

appears, i.e., (4–8) remains correct for arbitrary γ < n,
provided that γ /

√
n → ∞.

4.1. Fixed ratio ofmotifs are forbidden

Recall that C(�) denotes the probability that a recursive
tree of size γ takes the shapes in �. Since there are alto-
gether (γ − 1)! recursive trees of size γ , we define k as the
number of recursive trees of size γ that have the shapes in
�. One possible scenario is to examine the family of for-
bidden motifs in which k and (γ − 1)! have a fixed ratio.
In other words, in this situationwe are studying a scenario
in which

C(�) = k
(γ − 1)!

= q

is constant, a particular instance being the case that all
motifs of size γ are forbidden (i.e., q = 1). From Proposi-
tion 4.1, we immediately obtain

Corollary 4.1. In the scenario that C(�) = q is fixed, the
dominant singularity of f(z) is

z0 = 1 + q
γ 2 + 3q2 − 4q

4γ 3 + 58q3 − 63q2 + 72q
72γ 4 + O(γ −5).

Now Theorem 4.1 gives us the following result, which
exhibits a phase transition:

Theorem 4.2. If C(�) = q is fixed, the probability pn that
a recursive tree of size n does not have any member of the
family � occurring on the fringe satisfies

pn →
⎧⎨⎩
0 if γ /

√
n → 0,

e−q/a2 if γ /
√
n → a ∈ (0, ∞),

1 if γ /
√
n → ∞.
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Figure . Example in which � consists of all straight paths of γ

nodes.

4.2. Family of forbiddenmotifs is fixed

Another possibility is to consider the case where the num-
ber k of recursive trees of size γ that have the shapes in �

is held constant. In such a case, we have the following:

Corollary 4.2. In the scenario that k = C(�)(γ − 1)! is
fixed, the dominant singularity of f(z) is

z0 = 1 + k
(γ + 1)!

+ (3γ + 1)k2

2(2γ + 1)γ !(γ + 1)!

+ (29γ 3 + 32γ 2 + 10γ + 1)k3

6(2γ + 1)(3γ + 1)γ !(γ + 1)!2

+ O(γ −1γ !−4).

We give three examples of fami-
lies in which the value of k = (q)
(γ − 1)! is fixed. These examples illustrate the kinds
of families analyzed in Corollary 4.2. Besides the three
examples we give here, we can combine any of these
examples to get more. They are quite simple, but more
complicated examples are (of course) possible as well.

Example 4.1. As a first example, we consider the family
� consisting of straight paths. Each such path of length
γ has probability 1/(γ − 1)! (note that the labels have to
increase from the root down and are therefore unique).
Thus, this corresponds to the case k = 1. See Figure 3.

In this example, we obtain a very strong limit law by
combining the information of Theorem 4.1 and Corol-
lary 4.2. Specifically:

Theorem 4.3. Define λ = λ(n) as the positive integer for
which �(λ − 1

2 ) ≤ n < �(λ + 1
2 ). In a random recursive

tree of order n, the length of the longest straight path ending
in a leaf is either λ − 3 or λ − 2 with probability going to 1
as n goes to infinity.

Proof. In view of Theorem4.1 andCorollary 4.2, as n goes
to infinity, the probability that a recursive tree of size n
does not have a straight path of λ − 3 nodes occurring on

Figure . Example in which � consists of all stars, each of which is
a parent and γ −  children.

the fringe satisfies

pn ∼ exp
(

− n
(λ − 2)!

)
≤ exp

(
− �(λ − 1/2)

(λ − 2)!

)
→ 0.

Likewise, the probability that there is no straight path of
λ − 1 nodes occurring on the fringe satisfies

pn ∼ exp
(

− n
λ!

)
≥ exp

(
− �(λ + 1/2)

λ!

)
→ 1.

The theorem follows immediately. �

An analogous theoremholds for stars as well, which are
our second example:

Example 4.2. As a second example, consider the family �

consisting of stars, each of which is a parent and γ − 1
children. Each such star has size γ and therefore proba-
bility 1/(γ − 1)!, so each of these also corresponds to the
case k = 1 (again there is only one possible labeling once
the set of labels is fixed). See Figure 4.

Example 4.3. As a final example, consider the family �

consisting of a long string of length γ − 1, with one
node to the side, so that there are γ nodes altogether. The
branching node has a string of r − 1 descendants on one
side and 1 child on the other side. We fix the value of r
throughout the family�.With this setup, each such struc-
ture has probability (r − 1)/(γ − 1)!, which corresponds
to the case k = r − 1. See Figure 5.

Figure . Example in which� consists of structures with  branch-
ing node that has a string of r −  descendants on one side and 
child on the other side.
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