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21:2 F. T. BRUSS ET AL.

1. Introduction and Motivation

We consider auctions in which only the upper-price limit V is known. We face a
two-sided problem. Neither the number N of participants nor the distribution G of
the offers is known. The auction winner is the one who places the smallest bid that
is unique.

Viewed as an urn problem, there are N balls distributed among V urns; each
ball is distributed according to the distribution G. With the knowledge of V but
neither N nor G, we are able to place one additional ball. The placement should
maximize the probability our ball resides in the leftmost (i.e., smallest-numbered)
urn containing a single ball.

On one hand, we want to model the auction in a convincing way, in terms of
the expected behavior of participants. On the other hand, we want to solve an
optimization problem, that is, our model should be tractable and should allow for
asymptotic expansions, leading to a computable algorithm for placing our bid.

Our attack is based on arguing that G should be essentially geometric and that
some information on the expected value E(N ) of N and the variance V(N ) of N
can be obtained in practice. Under certain conditions concerning the relationship
between G and N , we can compute the optimal placement of our bid in order to
win the auction.

Poissonization (namely, changing the number N of balls from a fixed quantity
into a random quantity with Poisson distribution and mean N ) and dePoissonization
(i.e., reconciling the Poissonized model with the original model, in which N is fixed)
both play an important role in making our answers explicit.

We omit some of the calculations here, but we maintain a longer version of this
report on our Web pages for the interested reader (see Bruss et al.).

We are not aware of any closely related problems in the literature. The so-called
“unique maximum problem for independently and identically distributed random
variables” (see Bruss and O’Cinneide [1990]), which has attracted interest, may
sound somewhat similar. But this is a very different problem. (See also Bruss
and Grübel [2003] and Kirschenhofer and Prodinger [1996] for more details and
further references.) The unique maximum problem has no strategic component at
all, whereas in the problem we consider here, this is a major component. Note also
that the minimum unique bid feature distinguishes our problem essentially from
so-called “reverse auctions.”

The auctions, in which the smallest unique bid is the winner, can be found
in a variety of real-world auctions. The emerging importance of such auctions is
chronicled on Wikipedia1 and in two working papers [Östling et al.; Rapoport et al.].
According to the Wikipedia terminology, our problem would be best described as
a sealed unique minimum bid auction with a random number of participants. One
successful Web site with such auctions is http://www.limbo.com/unique. We
outline two other concrete examples.

Such auctions have been offered by a German real-estate company that conducts
Internet traumhaus (i.e., dreamhouse) auctions, which have attracted a great deal
of interest. A house is put up for auction on the Internet, with photos and an upper

1 (see http://en.wikipedia.org/wiki/Mobile_reverse_auction and http://en.
wikipedia.org/wiki/Unique_bid_auction)
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price estimation V . Offers can be made in the form of any nonnegative Euro/cents
amount that does not exceed V . For instance, 0 or 1.47 are admissible offers;
neither 1.471 nor V + 1 is valid. In one such auction on the Internet, V was

350,000.00, and only the winning bidder had to pay. After a bidding period of
several months, the bidder with the smallest unique offer wins the auction. The
description of the rules is somewhat less transparent if all offers are bid at least
twice. For this reason, we concentrate on the true objective, namely, to maximize
the probability that our bid is the smallest unique bid.

Similar auctions or lotteries are now advertized in many places and seem to
attract a lot of attention. At the Karlsberg brewery, with each purchase of a case of
the new “Urmild” beer, the buyer has an opportunity to make an offer for a sports
car. In this case, the smallest single offer (if any) wins the car. Bids must be placed
in Euro integer values.

The fact that such auctions appear in a variety of settings with the same basic
principles is an indication that the advertizers have adequate intuition about the
correct relationship between the upper bid limit and the number of bids placed, that
is, between the numbers of “urns and balls.”

The Karlsberg brewery’s sports car auction is likely to be an excellent advertizing
campaign; moreover, it may directly increase sales of the “Urmild” beer, since
each purchase of beer gives the purchaser the ability to make a new offer on the
sports car. Hence the motivation for the Karlsberg brewery is very clear. In the
traumhaus (dreamhouse) auction example, the value of the prize is much larger,
so one might initially question whether such an auction can possibly be rewarding
for the company who offers it. The company in this case is a real estate company,
and advertizing aspects may again play a central role. We also note that bids can
be placed by pay-phone, so several bids can be placed by the same person. Each
bidder is allowed to make more than one offer overall, but at most one offer per
day.

Additional rules concerning such auctions add further interest to the setup. For
instance, in the preceding formulation of the traumhaus (dreamhouse) auction, only
the auction winner has to pay the money that he or she bid. In another variation,
each bid placed must actually be paid immediately, as well as some entrance fee;
in this case, unsuccessful bids are returned to the bidder, but the entrance fee is
not returned. This is reminiscent of buying a ticket in a lottery; the offers can be
expected to be smaller than in the original version (i.e., without an entrance fee or
deposit). Unlike a lottery, however, the ticket prices vary, and the buyer has full
control of what ticket he chooses! We see a good chance of such auctions being
very profitable for the company that offers them. It may be only a matter of time
until lowest unique bid auctions are found even more prevalently on the Internet.
For this reason, we introduce an early analysis of such auctions.

2. Definitions and Overview

Let N (corresponding to the number of bids placed in the auction) be a nonnega-
tive integer-valued random variable with distribution function F . Let X1, X2, . . .
(corresponding to the bids placed in the auction) be a sequence of discrete-valued,
independent, identically distributed, nonnegative random variables. Given N = n,
then the Xi ’s each have distribution function Gn . Our objective is to fix an additional
value X = Xn+1 (corresponding to our own preferred bid in the auction) in such a
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21:4 F. T. BRUSS ET AL.

FIG. 1. The number of balls in urn K denotes the number of submitted offers of K cents. V is the
upper offer limit (in cents). The offer of 4 cents is here the winner because it is the smallest single
offer. Urns close to V are naturally very likely to be empty.

way that X = Xn+1 has maximum probability of being the smallest among those
values X1, X2, . . . , Xn+1 that are unique. In other words, if

An =
{

Xk :
n∑

j=1

[[X j = Xk]] = 1

}
denotes the set of the first n bids that are unique, then our goal is to find a value X
in the support of Gn such that

X = arg max
{X∈suppGn}

P

({
X < min An

}
∩

{ n∑
j=1

[[X j = X ]] = 0

})
.

In other words, we want X to be distinct from all of the other bids (i.e.,
∑n

j=1[[X j =
X ]] = 0), and we want X to be smaller than all of the other unique bids (i.e.,
X < min An). Moreover, we want to find an algorithm to efficiently compute an
asymptotic value of X .

At the outset, we did not know the most appropriate distribution of the bids, so we
used a variety of settings in our analysis, including some of the variations discussed
earlier. For each model and each possible bid K , we calculate the probability of
winning the auction when placing bid K . Section 3 proposes an urn model, where
each urn corresponds to one offer. We are led to our first model in which the offers
are placed independently, each with geometric distribution (with fixed parameter p).
For each possible bid K , we calculate two probabilities: (1) the participants want to
have a certain probability P1(K ) = 1−η of placing a bid that is unique, and (2) the
participant wants to maximize the probability P2(K ) of winning by placing bid K ,
that is, the probability that bid K is unique, and no lower bid is unique. Section 4
proves the unicity of the maximum. We investigated a selection of improved models;
in Section 5 we present the best improvement that we found, in which the bids are
again placed independently, each with geometric distribution p = 1 − e−1/mκ

,
for fixed κ < 1, where m denotes the average number of bids placed. This model
inherently allows bidders to take advantage of the number of bids m that they believe
will participate in the auction, based on past experience. Section 6 concludes the
article.

3. Proposing a Model

The essential difficulty of the problem is the fact that only the upper-price limit V
is known. In order to optimize the placement of our bid, we need to understand
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the total number of bids placed and the distribution of the bids; otherwise, the
optimization problem is not well defined. Therefore, we first discuss aspects of the
underlying stochastic model.

3.1. PROBABILISTIC MODEL. We first note that, in order to make the real-world
problem meaningful, the number of offers N and the cumulative distribution func-
tion G of the value of each bid cannot be chosen independently. The support of
G (i.e., the discrete set of allowable bids) should have no gaps at all because if G
had a gap, then everyone would be interested in bidding at the smallest gap, which
would solve the unicity problem already. Therefore, G should have support of the
form [1, V ], (almost). So, G(x) (the probability that a bid does not exceed x) is
strictly increasing to 1 for 1 ≤ x ≤ V .

By observing previous auctions, it should be possible to estimate E(N ), the
average number of bids placed. We model N as a binomial random variable with
parameters n and p = E(N )/n, where n denotes the approximate number of people
who can read the auction on the Internet. Let N = I1 + I2 + · · · + In where Ik = 1
if the kth reader will participate, and Ik = 0 otherwise. Then, by the central limit
theorem for sums of independent identically distributed random variables, we may
suppose that N is approximately normal for large n. We want to be somewhat less
restrictive, however, so we actually only require certain moment conditions on N
(discussed in the analysis that follows).

Another crucial argument is that a memoryless property should hold at least for
the important range of lower offers. Indeed, keeping the large V in mind, someone
who bids 100.17 would be just as willing to increase (upon advice) the bid to

100.89, as compared to somebody else who would increase a bid from 1.17 to
1.89. Exceptions to the memoryless property would be expected for large offers

approaching the price limit V but this will be, as we shall see, of virtually no
importance for our computations.

It is well known that the geometric distribution is the only discrete memoryless
distribution. The three conditions therefore strongly support the assumption that G
should be modeled as a (truncated) geometric distribution. Here again we should
point out that, if we want to maintain the memoryless property for the random
variable describing the height of a bid, there is simply no alternative to the geometric
distribution.

3.2. BIDS PLACED ACCORDING TO A FIXED GEOMETRIC DISTRIBUTION. We
first consider the case where the success parameter is fixed in the geometric distri-
bution for G.

THEOREM 3.1. Consider a unique-lowest-bid auction in which the bids are
placed independently according to a geometric distribution with fixed probabilities
of success and failure p and q, respectively. Let m and σ 2 denote the mean and
variance of the number N of bids placed, not including our own bid. Use U :=
(N −m)(p/q) to normalize the number of bids placed, and assume the kth moments
of U satisfy μk = o(mk−2)σ 2. Also, for simplicity, suppose U is integer-valued,
with distribution ρ(u). Our own bid is K . Let π = pq K−1 denote the probability
that a given bidder also bids K . The probability P1(K ) that no offer coincides with
K is

P1(K ) ∼ e−mπ + e−mπ (mπ )2

2

[
σ 2

m2
− 1

m

]
+ . . . . (1)
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The probability P2(K ) of winning when placing bid K , that is, the probability that
bid K is unique and there is no lower unique bid is

P2(K ) ∼ e−mπ
∞∏

i=1

(1 − e−mπi mπi ), (2)

where πi := pq K−1−i .

Before the proof of Theorem 1 we give three short examples to explain the
assumptions. Throughout the proofs and examples that are to follow, we use v =
K − log mp

q as a normalized representation of K . For ease of notation, sometimes
we view P1 and P2 as functions of v instead of K ; this is natural, since v and K are
in a one-to-one correspondence.

Example 3.1. If p = q = 1/2 and N is Gaussian with mean and variance
each equal to 1000, then a participant who wants to attain probability .8 of having
a unique bid should bid 12.

Example 3.2. More generally, consider the case where a participant wants to
attain a certain probability P1(K ) = 1 − η of having a unique bid. We define
β := σ 2 p

mq . Set

v = ṽ + γ0q
mp

+ . . . ,

with ṽ = ln[− ln(1−η)]
ln q and γ0 = − ln(1−η)

2 ln q

[
β − p

q

]
.

Now we must find a particular bid vn such that P1(vn) = 1 − η.
Example 3.1 was calculated using β = 1 (hence γ0 = 0), η = 0.2, which gives,

from (1), a numerical value vn = 2.18 . . . , and ṽ = 2.16 . . . , K̃ = �log mp
q +ṽ	 = 12.

Example 3.3. As in the proof of Theorem 3.1 that follows, we use u = (n −
m)(p/q) as a normalized version of the number of bids placed. We observe that

P2(K ) ∼
∑

u

ρ(u)(1 − π )n

{ ∞∏
i=1

[
1 − nπi (1 − πi )

n−1]} . (3)

The range for i should be 1 ≤ i < K , but as proved in Louchard et al. [2005], the
error incurred by extending the range to 1 ≤ i < ∞ is exponentially negligible.

The numerical optimal value of (3), using the same conditions as Example 3.1
(i.e., q = 1/2 and m = 1000) is given by vn = 0.55 . . . , with P2(vn) = 0.263 . . . .
A plot of P2(v), using (6), is given in Figure 2.

To obtain maxv P2(v), we first compute ṽ that yields a maximum in F0(v) :=
e−mπ

∏∞
i=1(1 − e−mπi mπi ) (notice that F0(v) is the first-order approximation of

P2(v); this is discussed in the proof of Theorem 3.1 to follow). With the same choice
of parameters from Example 3.1, a plot of F0(v) is given in Figure 3. This leads to
ṽ = 0.5613032851. . . , F0(ṽ) = 0.2642452648 . . . , K̃ = �log mp

q + ṽ	 = 10.
A comparison between P2(v) and F0(v) is shown in Figure 4, where it seems that

F0(v) dominates P2(v) on [0, 2].
Then we set v̄ = ṽ + γ1q

mp + . . . and P ′
2(v̄) = 0. This gives to a value v̄

that maximizes the expression for P2(v) given in (8), which we emphasize is
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FIG. 2. P2(v). This graph presents the probability that the K th urn is empty and all nonempty urns
with number smaller than K contain more than one ball. Here K is scaled to K = log mp

q + v .

second-order accurate. In other words, we write the expression for P2(v) from (8)
as P2(v) = F0(v) + F1(v)q

mp + · · · , and we solve F ′
0(v̄) + F ′

1(v̄)
m∗ = 0, or γ1 = − F ′

1(ṽ)
F ′′

0 (ṽ) ,
so that

P2(v̄) ∼ F0(v̄) + F1(v̄)q
mp

∼ F0(ṽ) + F1(ṽ)q
mp

.

To summarize, the algorithm works as follows.

Algorithm 1.

Input: p, m, β

Output: second order optimal value for K : K̄
Solve F ′

0(ṽ) = 0;

Compute γ1 = − F ′
1(ṽ)

F ′′
0 (ṽ) ;

Compute K̄ = �log mp
q + ṽ + γ1q

mp 	;
End

With our choice of parameters, we compute γ1 = 1.07903 . . . . As K must be an
integer, we see that the correction in our example is practically negligible.

PROOF (OF THEOREM 3.1). First we prove (1). We use Poisson approximation to
estimate P1(K ). (See, for instance, Barbour et al. [1992].) Given there are exactly
N = n other offers, the condition probability that no offer coincides with our bid

ACM Transactions on Algorithms, Vol. 6, No. 1, Article 21, Publication date: December 2009.
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FIG. 3. F0(v).

K is

P1(K |N = n) = (1 − π )n

∼ exp

[
−mπ − mπε − (mπ )2

2m
+ O

(
1

m

)
+ O

( ε

m

)]
∼ e−mπ

[
1 − mπε − (mπ )2

2m
+ ε2(mπ )2

2
+ O

(
1

m

)
+ O

( ε

m

)]
,

(4)

where the O’s are functions of mπ , and where ε is defined so that n = m(1 + ε).
We obtain of course the Gumbel distribution as the dominant term.

Now we define u = (n −m)(p/q). Summing (4) over all possible values of n (or
equivalently, over all u) yields the unconditional probability that no offer coincides
with K ,

P1(K ) ∼
∑

u

ρ(u)e−mπ

[
1 − mπ

u
mp/q

+ (mπ )2

2

[(
u

mp/q

)2

− 1

m

]
+ . . .

]

= e−mπ + 0 + e−mπ (mπ )2

2

[
σ 2

m2
− 1

m

]
+ . . . , (5)

as desired.
Now we turn our attention to the proof of (2). As before, we use u = (n−m)(p/q)

as a normalized version of the number of bids placed. We observe that

P2(K ) ∼
∑

u

ρ(u)(1 − π )n

{ ∞∏
i=1

[
1 − nπi (1 − πi )

n−1]} , (6)
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FIG. 4. A comparison between P2(v) and F0(v).

As noted earlier in Example 3.3, the range for i should be 1 ≤ i < K , but as proved
in Louchard et al. [2005], the error incurred by extending the range to 1 ≤ i < ∞
is exponentially negligible.

We must carefully study the effect of the dispersion of U around its mean 0.
Recall n = m(1 + ε). We compute

(1 − πi )
n−1 ∼ exp

[
−mπi − mπiε − (mπi )2

2m
+ mπi

m
+ O

(
1

m2

)
+ O

( ε

m

)]
∼ e−mπi

[
1 − mπiε − mπi (−2 + mπi )

2m
+ ε2(mπi )2

2

+ O
(

1

m2

)
+ O

( ε

m

) ]
.

Note that the 1/m term is different from the one in (4). This leads to

P2(K ) ∼ e−mπ
∑

u

ρ(u)

[
1 − mπε + (mπ )2

2
ε2 − (mπ)2

2m
+ . . .

]
×

{ ∞∏
i=1

(
1 − e−mπi

[
1 − mπiε + (mπi )2

2
ε2

− mπi

2m
[−2 + mπi ] + . . .

]
mπi [1 + ε]

)}
. (7)
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This shows that the dispersion of K around log m is O(1). All these sums are easily
shown to converge. So we get finally

P2(K ) ∼ e−mπ
∞∏

i=1

(1 − e−mπi mπi )

+ 1

m∗ e−mπ
∞∏

i=1

(1 − e−mπi mπi )

{
β

[ ∞∑
1

−e−mπi mπi (−mπi + (mπi )2

2 )

1 − e−mπi mπi

+ 1

2

( ∞∑
1

−e−mπi mπi (−mπi + 1)

1 − e−mπi mπi

)2

− 1

2

∞∑
1

(−e−mπi mπi (−mπi + 1)

1 − e−mπi mπi

)2

−mπ

∞∑
1

−e−mπi mπi (−mπi + 1)

1 − e−mπi mπi
+ (mπ )2

2

]
(8)

− p(mπ )2

2q
+ p

2q

∞∑
1

e−3mπi mπi [−2 + mπi ]

1 − e−mπi mπi

}
, (9)

where we recall β := σ 2 p
mq .

4. Uniqueness of the Maximum

Please note that we cannot assure so far that the candidate for this maximum is
unique. Let us work with the simple case p = 1 − 1

e and q = 1
e . Then

F0(v) = exp[−mπ ]
∞∏

i=1

[
1 − exp [−mπi ] mπi

]
.

We will deal with the logarithm,

InF0(v) = −mπ +
∞∑

i=1

In[1 − exp[−mπi ]mπi ], (10)

and observe the following.
(i) Numerically we see that ln F0(v) possesses a maximum at ṽ = 0.798313-

4948. . . with ln F0(ṽ) = −1.024695735 . . . . A plot of ln F0(v) for −0.2 ≤ v ≤ 4
is given in Figure 5. We replaced the range of i in (10) with 1 ≤ i ≤ 30.

(ii) In fact, we obtain an excellent approximation of ln F0 for 0 ≤ v ≤ 4 by
using only 1 ≤ i ≤ 5. The error incurred by ignoring the terms for i ≥ 6 is less
than 0.0045767767 . . . . This justifies the use of 1 ≤ i ≤ 30 in (10) for numerical
computations.

(iii) For v < 0, we have

ln F0(v) ≤ ln F0(0) = −1.202264688 . . . .

(iv) For v ≥ 4, we can practically limit the sum in (10) to max{�v	 − 13, 1} ≤
i ≤ �v	+2, which entails an asymptotic periodicity. The error incurred by ignoring
the other values of i is less than 1.31 . . . 10−4. A plot of 4 ≤ ln F0(v) ≤ 12 is given
in Figure 6, showing the asymptotic periodicity for large v . We could analyze the
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FIG. 5. ln F0(v) for −0.2 ≤ v ≤ 4.

periodicity in detail with Mellin transforms (see, for instance Flajolet et al. [1995],
or Szpankowski [2001]) but we will not pursue this matter further here.

(v) We conclude that the maximum (unique or not) occurs for some v with
0 ≤ v ≤ 1.

(vi) A similar analysis shows that ln F0(v) is concave down for 0 ≤ v ≤ 1,
proving the unicity. A plot of ∂2

v ln F0(v) is given in Figure 7.
(vii) Finally, the effect of F1(v)q

pm , for large m, does not destroy the maximum
unicity.

5. Improved Probabilistic Model

We now let p and q depend on n, where our problem stays as before. We did
explore the possibility q(n) = e−C/n where C is constant, but this ultimately led
to an absurdity, so we do not discuss the case q(n) = e−C/n here. Instead, we note
that the absurdity can be removed by using q(n) = e−Cδ(n), by carefully choosing
δ(n). For simplicity, let C = 1. We change the scale into

K = ϕ0(m) + ϕ1(m)v,

and we want mπ = mp(m)q(m)K−1 = e−v , where m again denotes the aver-
age of the number of bids N . Restricting attention first to the dominant term
yields

mπ ∼ mδ(m)e−δ(m)[ϕ0(m)+ϕ1(m)v]. (11)

So we choose ϕ1(m) = 1
δ(m) and mδ(m)e−δ(m)ϕ0(m) = 1. For instance, if δ(m) =

1/mκ for κ < 1, then we have m1−κe−ϕ0(m)/mκ = 1, or equivalently ϕ0(m) =
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FIG. 6. ln F0(v) for 4 ≤ v ≤ 12.
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FIG. 7. ∂2
v ln F0(v) for 0 ≤ v ≤ 1.

(1 − κ)mκ ln(m); also ϕ1(m) = mκ  ϕ0(m) and mκ  m. Now (11) leads to e−v ,
as expected.

Therefore, throughout this section, we consider the model in which the bids are
placed independently, each with GEOM(p(n)) distribution, with q(n) = e−1/nκ

and
p(n) = 1 − q(n), for fixed κ < 1. So the probability that a given participant bids
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i is πi := p(n)q(n)i−1. If a total of k bids are placed, each with GEOM(p(n))
distribution, then we define Xi (k, n) = 1 if bid i appears exactly once among
the k bids (i.e., bid i is unique), and Xi (k, n) = 0 otherwise. Let X (k, n) =∑∞

i=1 Xi (k, n). So X (k, n) denotes the number of unique bids.

THEOREM 5.1. Consider an auction in which m and σ 2 are the mean and the
variance of the number of bids placed on average. If n independent bids are placed,
each with GEOM(p(n)) distribution, where q(n) = e−1/nκ

and p(n) = 1 − q(n).
The average number of unique bids is E(X (n, n)) = nκ + O(n−1). The second
moment is E(X2(n, n)) = n2κ + 3

4 nκ + O(n−1).

In the proof of Theorem 5.1, we will utilize Jacquet and Szpankowski’s [1998]
the diagonal dePoissonization theorem.

DIAGONAL DEPOISSONIZATION LEMMA [JACQUET AND SZPANKOWSKI 1998].
Let F̃n(τ ) be a sequence of Poisson transforms of fk,n which is assumed to be a
sequence of entire functions of τ . Consider a polynomial cone C := {τ = x + iy :
|y| ≤ x}. Let the following two conditions hold for some A > 0, B, and α > 0, β,
and γ :

(I) For τ ∈ C and |τ | ≤ 2n,

|F̃n(τ )| ≤ Bnβ ,

(O) For τ /∈ C and |τ | = n,

|F̃n(τ )eτ | ≤ nγ exp(n − Anα) .

Then, for large n,

fn,n = F̃n(n) + O(nβ−1)

and more generally, for every nonnegative integer m,

fn,n =
m∑

i=0

i+m∑
j=0

bi j ni F̃ 〈 j〉
n (n) + O(nβ−m−1)

where F̃ 〈 j〉
n (n) denotes the j th derivative of F̃n(τ ) at τ = n, and where the bi j are

defined by B j (x) = ∑
i bi j x i and B j (x) = [y j ](e−xy(1 + y)x ). (The relation of the

coefficients bi j to Poisson-Charlier polynomials and the Laguerre polynomials is
also described briefly in Jacquet and Szpankowski [1998].)

PROOF (OF THEOREM 5.1). To obtain the asymptotics of E(X (n, n)), we consider
a model with a Poisson number Nτ of bids, where Nτ has mean τ . We write
X̃i (τ, n) = 1 if bid i appears exactly once among the Nτ bids (i.e., bid i is unique),
and X̃i (τ, n) = 0 otherwise. Let X̃ (τ, n) = ∑∞

i=1 X̃i (τ, n). So X̃ (k, n) denotes the
number of unique bids, when a total of Nτ bids are placed.

We let M̃n(τ ) := E(X̃ (τ, n)) and Ũn(τ ) := E(X̃2(τ, n)) denote the first and
second moments of X̃ (τ, n), so

M̃n(τ ) =
∞∑

k=0

e−τ τ k

k!
E(X (k, n))=

∞∑
i=1

τπi e−τπi ,
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Ũn(τ ) =
∞∑

k=0

e−τ τ k

k!
E(X2(k, n)) =

∞∑
i=1

τπi e−τπi

(
1 +

∑
j �=i

τπ ( j)e−τπ ( j)
)
. (12)

Since E(X (n, n)) satisfies conditions (I) and (O) the diagonal dePoissonization
lemma (with β = 1) for F̃n(τ ) = M̃n(τ ), then, for every nonnegative integer m,

E(X (n, n)) =
m∑

i=0

i+m∑
j=0

bi j ni ∂ j
τ E(X̃ (τ, n))

∣∣
τ=n + O(n−m).

In particular, when m = 1,

E(X (n, n)) = E(X̃ (n, n)) − 1

2
nM̃ ′′

n (n) + 1

3
nM̃ ′′′

n (n) + O(n−1). (13)

We note that M̃ 〈 j〉
n (n) = ∑∞

i=1(−πi ) j e−nπi (nπi − j). Each of the correction terms
in (13) decay exponentially in terms of n. In particular, the 1

3 nM̃ ′′′
n (n) term given

before is not only O(n−1) but in fact is exponentially small in terms of n. Thus (13)
simplifies to

E(X (n, n)) = E(X̃ (n, n)) − 1

2
nM̃ ′′

n (n) + · · · . (14)

We use Euler-Maclaurin summation to compute

E(X̃ (n, n)) =
∞∑

i=1

nπi e−nπi =
∫ ∞

1
nπi e−nπi di − 1

2
nπi e−nπi

∣∣∣∣∞
i=1

+ · · · . (15)

The integral evaluates to

nκ (1 − exp(n(e−1/nκ − 1))) = nκ − nκ exp(−n1−κ ) + · · · ;

also, the lower-order terms, and all correction terms, decay exponentially in terms
of n.

Thus, the expectation in the Poisson model is

E(X̃ (n, n)) ∼ nκ . (16)

Next, we use Euler-Maclaurin summation to compute the correction between
E(X (n, n)) and E(X̃ (n, n)), namely

−1

2
nM̃ ′′

n (n) ∼ −1

2
n

∫ ∞

1
(−πi )

2e−nπi (nπi − 2)di = �(n1−κ exp(−n1−κ )),

and thus decays exponentially in terms of n. Thus, the expectation in the dependent
model is

E(X (n, n)) ∼ nκ .

In summary, E(X (n, n)) and E(X̃ (n, n)) are each asymptotically nκ , and the differ-
ence between E(X (n, n)) and E(X̃ (n, n)) is at most O(n−1).

Checking conditions (I) and (O) of the diagonal dePoissonization lemma for
F̃n(τ ) = Ũn(τ ) and fk,n = E(X2(k, n)), we see that (I) and (O) are both satisfied
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(with β = 2). Thus, for every nonnegative integer m,

E(X2(n, n)) =
m∑

i=0

i+m∑
j=0

bi j ni ∂ j
τ E(X̃2(τ, n))

∣∣
τ=n + O(n1−m).

In particular, when m = 2,

E(X2(n, n)) = E(X̃2(n, n)) − 1

2
nŨ ′′

n (n) + 1

3
nŨ ′′′

n (n) + 1

8
n2Ũ ′′′′

n (n) + O(n−1).

(17)

By similar reasoning to the average case analysis, the second moment in the Poisson
model is

E(X̃2(n, n)) ∼ n2κ + 3

4
nκ , (18)

and the error terms have exponential decay in terms of n. Also, similar to the
average case, we use Euler-Maclaurin summation obtain the second moment in the
dependent model.

E(X2(n, n)) = n2κ + 3

4
nκ + O(n−1)

In particular, E(X2(n, n)) and E(X̃2(n, n)) each are asymptotically n2κ + 3
4 nκ . The

difference between E(X2(n, n)) and E(X̃2(n, n)) is at most O(n−1).

5.1. LOCATION OF THE OPTIMUM BID. Now we consider the probability P2(K )
of winning when placing bid K , or equivalently, the probability that bid K is unique
and that there is no lower unique bid. As in Theorem 5.1, m and σ 2 are the mean
and the variance of the number of placed bids. A total of n bids (not including
our own bid) are independently placed, each with GEOM(p(n)) distribution, with
q(n) = e−1/nκ

and p(n) = 1 − q(n), for fixed κ < 1. So the probability that
a given participant bids i is πi := p(n)q(n)i−1. As before, we recall that v is a
rescaling of K , by using K = ϕ0(m) + ϕ1(m)v , where ϕ0(m) = (1 − κ)mκ ln(m)
and ϕ1(m) = mκ  ϕ0(m).

Example 5.1. To illustrate the location of the optimum bid, consider the plot
of P2(v) using (6), with κ = 1/2 and m = 1000, given in Figure 8. This leads to
vn = −1.24 . . . and P2(vn) = 0.0117 . . . . In our derivations that follows, we also
numerically obtain ṽ = −1.24 . . . , P̃2 ∼ 0.01164 . . . . This corresponds to the bid
of K̃ = 70.

THEOREM 5.2. In general, consider the probability P2(K ) of winning when
placing bid K , or equivalently, the probability that bid K is unique and that there
is no lower unique bid. As in Theorem 5.1, m bids are placed on average. A total of n
bids (not including our own bid) are independently placed, each with GEOM(p(n))
distribution, with q(n) = e−1/nκ

and p(n) = 1 − q(n), for fixed κ < 1. So the
probability that a given participant bids i is πi := p(n)q(n)i−1. As before, we
recall that v is a rescaling of K , by using K = ϕ0(m) + ϕ1(m)v, where ϕ0(m) =
(1 − κ)mκ ln(m) and ϕ1(m) = mκ  ϕ0(m).
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FIG. 8. P2(v) for the case q(n) = e−1/nκ
. Here the maximum is taken for K̃ around 70.

Then we obtain

P̃2 ∼ 1

mκ
e−1. (19)

PROOF. Limiting ourselves to the dominant term, we have

P2(v) ∼ exp
[−e−v] ∞∏

i=1

{
1 − exp[−e−(v−i/mκ )]e−(v−i/mκ )} . (20)

Numerical experiments show that we must take v  0. This entails e−(v−i/mκ ) � 1
and hence exp

[−e−(v−i/mκ )
]  1; also

ln
{
1 − exp[−e−(v−i/mκ )]e−(v−i/mκ )} ∼ − exp

[−e−(v−i/mκ )] e−(v−i/mκ ).

Using Euler-Maclaurin and setting (v − i/mκ ) = η, yields

P2(v) ∼ exp
[−e−v] exp

[
−mκ

∫ v

−∞
exp

[−e−η
]

e−ηdη

]
. (21)

By taking logarithms, maximizing P2(v) leads to

e−ṽ − mκ exp[−e−ṽ ]e−ṽ = 0,

or ṽ = − ln[ln(mκ )]  0, as expected. Now we want P̃2 = P2(ṽ). Set η = ṽ − τ .
From (21) we obtain

−mκ

∫ ṽ

−∞
exp

[−e−η
]

e−ηdη = −mκ

∫ ∞

τ=0
exp[−e−ṽ+τ ]e−ṽ+τ dτ.
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Using eτ = u yields

−mκ

∫ ∞

0
exp

[− ln(mκ )eτ
]

ln(mκ )eτ dτ = −mκ

∫ ∞

u=1
ln(mκ ) exp(− ln(mκ )u)du,

and hence, after a straightforward computation −mκ exp(− ln(mκ )) = −1. So,
finally

P̃2 ∼ 1

mκ
e−1. (22)

Remark. We have tried to understand whether the factor 1/e has a simple ex-
planation, but we are not able to find an analogy of the problem to a problem of
sequential selection. We also note |ṽ|  ϕ1(m) and K̃ = ϕ0(m) + ϕ1(m)ṽ =
mκ [(1 − κ) ln(m) − ln(ln(m)) − ln(κ)] � 1.

A correction to the dominant term can be computed. We derive, with ε = u/m,

P0(v) ∼ exp[−e−v ]

[
1 − e−v

2mκ
− e−vε[1 − κ + κv]

+ e−v ε2

2

[
3κ2v − κv − κ2 − κ2v2

+ κ + e−v + 2e−vκv − 2e−vκ + e−vκ2v2 − 2e−vκ2v + e−vκ2]
+ O

(
1

m2κ

)
+ O

(
1

m

)
+ O

( ε

m

)]
.

We see here that the dominant term is related to the 1
mκ term. This is independent from

β = σ 2 p
mq . Similarly, we obtain (up to the required precision) (1−π )n−1 ∼ (1−π )n ,

and

nπ ∼ e−v
[

1 + 1

m2κ
+ ε[1 − κ + κv] − κ

ε2

2
[−1 + κv2 + v − 3κv + κ]

]
.

So, finally, the dominant term bracketed in P2(v) (see (20)) becomes{ ∞∏
i=1

(
1 − exp

[−e−(v−i/mκ )] [
1 − e−(v−i/mκ )

2mκ

]
e−(v−i/mκ )

[
1 + 1

2mκ

])}
(23)

and

P2(v) ∼ exp
[−e−v] [

1 − e−v

2mκ

]
×

{ ∞∏
i=1

(
1 − exp

[−e−(v−i/mκ )] [
1 − e−(v−i/mκ )

2mκ

]
e−(v−i/mκ )

[
1 + 1

2mκ

])}
.

(24)

We must now compute the solution v̄ of ∂v ln(P2(v)) = 0. Proceeding as earlier,
this leads to

1 + 1

2mκ
− mκ exp

[−e−v̄] [
1 − e−v̄

2mκ

] [
1 + 1

2mκ

]
= 0. (25)
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Algorithm 2.

Input: C, κ, m
Output: second order optimal value for K : K̄
Compute ṽ = − ln[ln(mκ )];
Compute K̃ = ϕ0(m) + ϕ1(m)ṽ ;
Compute K̄ = �K̃ + 1/2	;
End

Taking logarithms in (23) only induces an extra term of order exp[−2e−ṽ ]e−2ṽ =
O( ln(mκ )2

m2κ ) which does not affect (25). Set therefore e−v̄ = ln(mκ )+η. This gives the
dominant equation 1+ 1

2mκ −e−η[1− ln(mκ )+η

2mκ ][1+ 1
2mκ ] = 0, which is asymptotically

equivalent to

1 + 1

2mκ
− (1 − η)

[
1 − ln(mκ )

2mκ

] [
1 + 1

2mκ

]
= 0.

Therefore η ∼ − ln(mκ )
2mκ , that is, e−v̄ ∼ ln(mκ )

[
1 − 1

2mκ

]
. Equivalently,

v̄ ∼ − ln[ln(mκ )] + 1

2mκ
= ṽ + 1

2mκ
.

So we conclude that

K̄ ∼ K̃ + 1/2.

As K must be an integer, we see that the correction is practically negligible with
our choice of parameters. To summarize, the algorithm works as follows.

6. Conclusion

The problem studied in this article may be seen as a game where an unknown num-
ber of players participate. Each player can choose infinitely many actions, in the
sense that he/she can choose a distribution in an (uncountable) set of distributions
according to which to place his/her offer. The only constraint is that the support
of the chosen distribution must be on the set of integers between 1 and V . Hence,
the only approach to such a problem is to assume that individual strategic behavior
(to maximize the probability of placing the minimum single offer) leads to a com-
mon distribution for all players. We gave several good reasons why a (truncated)
geometric distribution should model the situation more suitably than other choices,
although clearly our arguments depend more on exclusion of unreasonable distri-
butions than on actual preferences. Our next step was to assume some knowledge
about E(N ) and the variance of N , because, as we argued, with no information on
N whatsoever, we still would have an ill-posed problem.

With these assumptions, the problem is sufficiently well defined to allow the
search for an optimum. In practice, finding the optimum is seemingly only possible
via asymptotic expansions and algorithms for which we can give, as we have seen,
explicit answers. We conclude that there is no good rule of thumb for the optimal
choice, that is, there is no easy answer without calculation. On the other hand,
in many cases, as exemplified in Section 6.1, the effort is clearly rewarding. The
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optimum is frequently distinguishably better than a random choice in regions we
may think of as being reasonable.

The algorithms we have given in this article are very simple, because our whole
setup is so far confined to deal with the problem in which we obtain no further
information during the auction. This is a nonsequential setup. As soon as we have
some sequential information about bids and numbers of bidders—and this is already
the case in some versions on the Internet—we can update the information and thus
are confronted with a sequential problem. But the structure is then the same. Our
algorithms indicate the place where the new information is needed. Most sequential
problems are generally very hard, and we see no promising access to such problems
other than by algorithms.

A final word. The general difficulty of the problem has one game-specific ad-
vantage. Since these results would probably be perceived as “too mathematical” by
the large majority of participants, we do not expect any serious danger of distortion
by publishing them.
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