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Abstract
The internal profile of a tree structure denotes the number of
internal nodes found at a specific level of the tree. Similarly,
the external profile denotes the number of leaves on a
level. The profile is of great interest because of its intimate
connection to many other parameters of trees. For instance,
the depth, fill-up level, height, path length, shortest path,
and size of trees can each be interpreted in terms of the
profile.

The current study is motivated by the work of Park
et al. [22], which was a comprehensive study of the profile of
tries constructed from independent strings (also, each string
generated by a memoryless source). In the present paper,
however, we consider suffix trees, which are constructed
from suffixes of a common string. The dependency between
suffixes demands a careful, intricate treatment of overlaps in
words.

We precisely analyze the average internal and external
profiles of suffix trees generated by a memoryless source. We
utilize combinatorics on words (in particular, autocorrela-
tion, i.e., the degree to which a word overlaps with itself)
generating functions, singularity analysis, and the Mellin
transform. We make comparisons of the average profile of
suffix trees to the average profile of tries constructed from
independent strings. We emphasize that our methods are
extensible to higher moments. The present report describes
the first moment of both the internal and external profiles
of suffix trees.

1 Introduction.

The profile parameter of a tree data structure concerns
the number of nodes located at a certain level of the tree.
In other words, the profile of a tree is the enumeration
of nodes at a given distance from the root node, i.e.,
at a given depth in the tree. In particular, the internal
profile of a tree denotes the number of internal (i.e.,
branching) nodes located on a given level. The external
profile of a tree is the number of external (i.e., leaf)
nodes located on a given level.

The profile parameter of various tree data struc-
tures has recently garnered a great deal of attention in
the literature. One justification for the extensive at-
tempt to understand the profile parameter is its rele-
vance to a great number of other tree parameters, for
instance, the depth, fill-up level, height, path length,
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shortest path, and size of trees can each be interpreted
in terms of the profile. Also, for instance, the internal
profile at level k of a suffix tree is exactly the number
of words of length k in the tree which have two or more
occurrences. This interpretation becomes useful in ap-
plications in which repeated occurrences of words are
crucial, for instance, in data compression, leader elec-
tions, molecular biology, etc.

Due to space constraints, we refer the interested
reader to the recent seminal paper of Park et al. [22]
(which inherits from [20], [21], and [23]). Their 60
page paper is a comprehensive study of the internal and
external profiles of tries constructed from independent
strings (each string is also generated by a memoryless
source). In contrast, in the present report, we consider
suffix trees, which are constructed from suffixes of a
common string. We emphasize that the dependency
between suffixes repeatedly requires us to treat the
overlap exhibited by a word with itself.

We discuss the average internal and external pro-
files of suffix trees. In this report, each suffix tree is
built from a memoryless source; nonetheless, of course,
the suffixes are highly dependent on each other. For
this reason, we must consider the extent to which words
overlap with themselves. For this purpose, we utilize
recent results from the literature of combinatorics on
words. Other techniques that we use include generat-
ing functions, singularity analysis, and the Mellin trans-
form.

We emphasize the difficulty in the analysis of the
profile even in tries built from independent strings
(again, we refer to the lengthy report [22]). Thus, we
content ourselves in the present report with proving that
the profiles in tries (built from independent strings) and
in suffix trees asymptotically have the same behavior for
a wide range of the relevant parameters. Since the be-
havior of the profiles in tries constructed from indepen-
dent strings was described so thoroughly in [22], we con-
tent ourselves here with making intricate comparisons
to the asymptotic behavior of the analogous profiles in



suffix trees.
We must consider the relationship between the

number n of strings inserted into a suffix tree and the
level k of the tree for which we extract the profile.
In [22], the behavior of the the profile is categorized
according to the relationship between n and k. For this
reason, we tried to derive the most general type of result
about profiles in suffix trees as compared to profiles in
tries constructed from independent strings. Theorems
3.1 and 3.2 are valid for all k and n. Therefore, whether
k is a function of n, or (on the other hand) if k is treated
independently of n, the theorems below still hold. The
ε and µ in Theorems 3.1 and 3.2 do not depend on n or
k; i.e., the theorems are true for all n and k.

The higher moments of the profile of suffix trees—
as well as the exact distribution—are significantly more
difficult with the methods applied in this report. For in-
stance, the second moment of the profile of suffix trees
requires not only a careful account of the degree to
which a word overlaps with itself (i.e., the autocorrela-
tion of a word), but also the degree to which two distinct
words of the same length overlap with each other (i.e.,
the correlation of two distinct words). Higher moments
appear to require an even more extensive application of
correlation amongst sets of words. For this reason, we
present here only the average behavior of the internal
and external profiles of suffix trees. Although we have
looked extensively at the second moment of the profile
of suffix trees, we are limited by the space constraints
of this report. We expect to present a detailed analysis
of the second moment of the profile of suffix trees in the
near future, in a separate report.

We mention only a sampling of relevant papers: For
some results about the profile of other types of trees, we
suggest [2], [3], [4], [5], [6], [10], and [13]. For additional
material on suffix trees, we recommend [1], [7], [8], [12],
[14], [16], [15], and [27]. For various applications of
combinatorics on words, we mention [11], [14], [15], [24],
and [25]. Of course, a variety of other excellent reports
on suffix trees and combinatorics on words appear in
the literature.

In the present paper, we first establish some defini-
tions, and then we present the main results. Basically,
we report that the average profiles of suffix trees and
of tries constructed from independent strings asymp-
totically have the same behaviors. After stating the
main results, the remainder of the paper is dedicated to
the proofs. The proofs include a discussion of combi-
natorics on words; generating functions for the average
internal and external profiles in suffix trees and in tries
constructed from independent strings; singularity anal-
ysis; residue extraction; and finally an application of the
Mellin transform.

2 Definitions.

Throughout the discussion below, we work with binary
words, i.e., words from {0, 1}∗ = A∗. We first briefly
describe the means of constructing a trie data structure.
Consider a set of n binary strings X(1), . . . , X(n), where
the ith such string is denoted by

X(i) = X
(i)
1 X

(i)
2 X

(i)
3 . . . .

We insert the strings into a trie, starting at the root
node, in a recursive manner: If n = 0, the trie is empty.
If n = 1, the trie is a leaf. If n ≥ 2, then at the ith stage
in the construction, we partition the current set of words
into two sets, corresponding to whether the ith letter of
each word is a 0 or 1. All words under consideration
with ith letter 0 (respectively, 1) are placed into the left
(respectively, right) subtree.

In the case where the n strings X(1), . . . , X(n) are
chosen independently of each other, we use a “hat”
symbol on the relevant parameters. In a trie constructed
from independent strings, we use the following notation
for consistency with Park et al. [22]. The external profile
B̂n,k denotes the number of leaf nodes found on the
kth level of the trie (in other words, the number of leaf
nodes at a distance k from the root). Similarly, the
internal profile Ûn,k denotes the number of internal (i.e.,
branching) nodes found at the k level of the trie.

Now we consider a different model, in which the
strings X(1), . . . , X(n) are dependent on each other. We
let X = X1X2X3 . . . denote a binary string, where the
Xi’s are chosen according to a probability model to
be specified shortly. We write X(i) = XiXi+1Xi+2 . . .
to denote the ith suffix of X. The trie that is con-
structed from the first n suffixes of X, namely from
X(1), . . . , X(n), is called a suffix tree. The external pro-
file Bn,k in such a suffix tree denotes the number of ex-
ternal nodes (i.e., leaf nodes) found at distance k from
the root. The internal profile Un,k denotes the analo-
gous number of internal (i.e., branching) nodes.

Throughout the remainder of the paper, we focus
attention on X(i) and X such that the various X

(i)
j

and Xj ’s are independent from each other and are each
generated by a stationary, Bernoulli source. Thus,
we write P(w) for the stationary probability of the
occurrence of a word w; namely, P(w) = pmqn if w
contains exactly m “0”s and n “1”s. We have P(Xj =
0) = p and P(Xj = 1) = q in the suffix tree model;
similarly P(X(i)

j = 0) = p and P(X(i)
j = 1) = q in

the trie model constructed from independent strings.
Without loss of generality, throughout the discussion
we assume that 0 < q ≤ p < 1. We define δ =

√
p.

We choose c > 0 such that q−cδ < 1, and we choose ε
with 0 < ε < c. Finally, we define µ = q−cδ for ease of



notation.
At various points in the paper we use words w ∈ A∗,

and α, β ∈ A with α = 1 − β. In other words, the
ordered pair (α, β) denotes either the pair (0, 1) or the
pair (1, 0). This allows us to consider both wα and its
sibling wβ.

3 Main Results.

We point out once again that [22] presents a plethora of
results concerning the average behavior of the internal
and external profiles of tries constructed from indepen-
dent strings. In particular, [22] classifies the behavior
of such profiles according to the relationship between
n and k. Since [22] is such a comprehensive descrip-
tion of the profile in tries constructed from independent
strings, it is very fruitful to make a comparison of such
profiles to the profiles of suffix trees. Many of the results
about the average profile in tries constructed from inde-
pendent strings can be translated to analogous results
concerning the average profiles of suffix trees.

For this reason, we tried to derive the most gen-
eral type of result about the relationship between the
profiles in suffix trees as compared to profiles in tries
constructed from independent strings. Theorems 3.1
and 3.2 are valid for all relationships between k and n.
Therefore, whether k is a function of n, or (on the other
hand) if k is treated independently of n, the theorems
below still hold. Also, we emphasize that the ε and µ
in Theorems 3.1 and 3.2 below do not depend on n or
k; in other words, these are valid comparisons for all n
and k.

Theorem 3.1. Recall 0 < q ≤ p < 1, and also δ =
√

p.
Consider c > 0 such that µ := q−cδ < 1, and ε with
0 < ε < c.

The difference in the average internal profile Un,k

of a suffix tree (at level k, using the first n suffixes
of a common word) versus the average internal profile
Ûn,k of a trie (constructed from n independent strings)
is asymptotically negligible. The difference satisfies

E(Un,k)− E(Ûn,k) = O(n−εµk) .

Theorem 3.2. Recall 0 < q ≤ p < 1, and also δ =
√

p.
Consider c > 0 such that µ := q−cδ < 1, and ε with
0 < ε < c.

The difference in the average external profile Bn,k

of a suffix tree (at level k, using the first n suffixes of a
common word) versus the average internal profile B̂n,k

of a trie (constructed from n independent strings) is
asymptotically negligible. The difference satisfies

E(Bn,k)− E(B̂n,k) = O(n−εµk) .

We note that, in tries constructed from independent
strings, the nodes at the kth level appear for k ∼ log n.
(In other words, the case k ∼ log n is, in many respects,
the most interesting case.) So we state immediate
corollaries of Theorems 3.1 and 3.2 in the analogous
case, namely, when k = a log n, for a > 0 constant.

Corollary 3.1. Recall 0 < q ≤ p < 1, and also
δ =

√
p. Consider c > 0 such that µ := q−cδ < 1,

and ε with 0 < ε < c.
Let k = a log n, where a > 0 is constant. The

difference in the average internal profile Un,k of a
suffix tree (at level k, using the first n suffixes of a
common word) versus the average internal profile Ûn,k

of a trie (constructed from n independent strings) is
asymptotically negligible. The difference satisfies

E(Un,k)− E(Ûn,k) = O(n−δ) ,

where δ = ε + c log(1/µ) > 0.

Corollary 3.2. Recall 0 < q ≤ p < 1, and also
δ =

√
p. Consider c > 0 such that µ := q−cδ < 1,

and ε with 0 < ε < c.
Let k = a log n, where a > 0 is constant. The

difference in the average external profile Bn,k of a
suffix tree (at level k, using the first n suffixes of a
common word) versus the average internal profile B̂n,k

of a trie (constructed from n independent strings) is
asymptotically negligible. The difference satisfies

E(Bn,k)− E(B̂n,k) = O(n−δ) ,

where δ = ε + c log(1/µ) > 0.

The methodology used to prove these theorems
about the average profiles appears to be fully extensible
to similar proofs concerning the second moment of the
profiles.

We note that Theorems 3.1 and 3.2 are quite similar
in nature. So it is not surprising that the methodology
for both proofs is the same. As we will see, however, the
proof of Theorem 3.1 is slightly more manageable at the
point in which we begin to extract residues. For this
reason, due to space constraints, we give more details
about the proof of Theorem 3.1. We assure the reader
that analogous techniques can be utilized at the end of
the proof of Theorem 3.2.

No proof of Corollary 3.1 or 3.2 is necessary; we
simply have substituted k = a log n into the Theorems
3.1 and 3.2.

The remainder of the paper is dedicated to estab-
lishing these two theorems.



4 Combinatorics on Words.

We utilize some results from the literature of combi-
natorics on words. For a starting point to the theory
of combinatorics on words, we refer the reader to [11],
[14], [15], [24], and [25]; this is merely a sampling of the
growing literature in this area. For a collection of recent
results, see the three volumes edited by Lothaire [17],
[18], and [19].

At the heart of the theory of combinatorics on words
is a precise characterization of the extent to which a
word overlaps with itself. For this purpose, for each
word w of length m (i.e., w ∈ Am), we define the
autocorrelation polynomial of w as

(4.1) Sw(z) =
∑

i∈P(w)

P(wi+1 . . . wm)zm−i ,

where P(w) denotes the set of i’s satisfying w1 . . . wi =
wm−i+1 . . . wm. In other words, for each i ∈ P(w), the
prefix of w of length i is identical to the suffix of w of
length i.

Now we define some useful languages—and their as-
sociated generating functions—frequently used in com-
binatorics on words. We write

Rw = {v ∈ A∗ | v contains exactly one occurrence
of w, located at the right end} ,

Mw = {v ∈ A∗ | wv contains exactly two occurrences
of w, located at the left and right ends} ,

Uw = {v ∈ A∗ | wv contains exactly one occurrence
of w, located at the left end} .

We write the generating functions associated with these
languages as

Rw(z) =
∑

v∈Rw

P(v)z|v| ,

Mw(z) =
∑

v∈Mw

P(v|w)z|v| ,

Uw(z) =
∑

v∈Uw

P(v|w)z|v| ,

where P(v|w) := P(wv)/P(w). It is well-known (see,
for instance, [15]) that these generating functions can
easily be expressed in terms of Sw(z). If w ∈ Am, and
if we define

Dw(z) = (1− z)Sw(z) + P(w)zm ,

then we have

Rw(z) =
P(w)zm

Dw(z)
,

Mw(z) = 1 +
z − 1
Dw(z)

,

Uw(z) =
1

Dw(z)
.

We also need to utilize a more general theory
of counting occurrences of words found in a set of
restricted words. In other words, we need the ability
to simultaneously count the number of occurrences of
two words, say H1,H2 ∈ A∗, within a longer word. Of
course, in this more general situation, the overlaps of
H1 and H2 can occur frequently or rarely, depending
on the forms of H1 and H2. For each pair H1, H2

we are interested in counting, we must contend with
overlaps of H1 with itself, overlaps of H2 with itself,
and also the overlaps of H1 and H2 with each other.
This generalized theory of correlations between pairs of
words is discussed, for instance, in [15] and [24]. In this
report, we restrict attention to counting the number
of occurrences of two related words, of the form wα
and wβ, for w ∈ A∗ and α = 1 − β (in other words,
{α, β} = A). For this reason, we do not need the full
generality of [15] and [24]. When we restrict attention
to the number of occurrences of words of the form wα
and wβ, the theory becomes somewhat simpler. In this
specific case, the languages and generating functions
that we need can be reduced to very applicable forms.

The following are two useful languages, along with
their generating functions, that we will use in the proofs
of Theorems 3.1 and 3.2. We write

R̃wα = {v ∈ A∗ | v contains exactly one occurrence
of wα, located at the right end,
and no occurrences of wβ} ,

Ũwα = {v ∈ A∗ | wαv contains exactly one occurrence
of wα, located at the left end,
and no occurrences of wβ} .

The associated generating functions are

R̃wα(z) =
∑

v∈ eRwα

P(v)z|v| ,

Ũwα(z) =
∑

v∈eUwα

P(v|wα)z|v| .

The languages R̃wβ and Ũwβ , and their associated gen-
erating functions R̃wβ(z) and Ũwβ(z), are defined in an
analogous way. A tilde over a language or its gener-
ating function is intended to denote the consideration



of both wα and wβ. (Contrast this with the single-
variable equivalents defined earlier, which are used for
enumerating occurrences of a single word.)

In order to determine the generating functions of
R̃wα, R̃wβ , Ũwα, and Ũwβ , we need to define a few
languages, generating functions, and matrices from the
generalized theory of combinatorics on words (see [15]
and [24]). Again, we emphasize that we are interested
in enumerating the number of (possibly overlapping)
occurrences of the words H1 = wα and H2 = wβ within
longer words.

First, we define

Awα,wβ = {v ∈ A∗ | |v| ≤ |w| and wαv has an
occurrence of wβ at the right end} ,

and, in an analogous way, we define

Awα,wα = {v ∈ A∗ | |v| ≤ |w| and wαv has an
occurrence of wα at the right end} ,

Awβ,wα = {v ∈ A∗ | |v| ≤ |w| and wβv has an
occurrence of wα at the right end} ,

Awβ,wβ = {v ∈ A∗ | |v| ≤ |w| and wβv has an
occurrence of wβ at the right end} .

Then

Awα,wβ(z) =
∑

v∈Awα,wβ

P(v)z|v|

is the associated correlation polynomial of (wα, wβ).
The autocorrelation polynomials Awα,wα(z),
Awβ,wα(z), and Awβ,wβ(z) are defined in an anal-
ogous way.

We emphasize that Awα,wα(z) is exactly the auto-
correlation polynomial Swα(z).

Next, we define the correlation matrix

Aw(z) =
[
Awα,wα(z) Awα,wβ(z)
Awβ,wα(z) Awβ,wβ(z)

]
.

We observe

Aw(z) =

[
Swα(z) (Swα(z)− 1)P(β)

P(α)

(Swβ(z)− 1)P(α)
P(β) Swβ(z)

]
.

We also define the following matrix for w ∈ Am,

Dw(z) = (1− z)A(z) +
[
P(α) P(β)
P(α) P(β)

]
P(w)zm+1 ,

which will aid us in finding useful formulas for R̃wα(z),

Ũwα(z), R̃wβ(z), and Ũwβ(z). We easily compute

Dw(z)−1 =
1

det(Dw(z))

(

(1− z)

[
Swβ(z) (1− Swα(z))P(β)

P(α)

(1− Swβ(z))P(α)
P(β) Swα(z)

]

+
[

P(β) −P(β)
−P(α) P(α)

]
P(w)zm+1

)

for w ∈ Am. Also

det(Dw(z)) = (1− z)Dw(z) .

From the generalized theory of combinatorics on words,
as in [15] and [24], we know that, for w ∈ Am,

(R̃wα(z), R̃wβ(z)) = (P(wα)zm+1,P(wβ)zm+1)D(z)−1

and [
Ũwα(z)
Ũwβ(z)

]
= D(z)−1

[
1
1

]
.

These formulas are easily simplified to reveal

(R̃wα(z), R̃wβ(z)) =

(
P(wα)zm+1, P(wβ)zm+1

)
Dw(z)

and[
Ũwα(z)
Ũwβ(z)

]
=

1
Dw(z)

[
Swβ(z) + (1− Swα(z))P(β)

P(α)

(1− Swβ(z))P(α)
P(β) + Swα(z)

]
.

The generating functions R̃wα(z), Ũwα(z), R̃wβ(z),
and Ũwβ(z) allow us to measure occurrences of words
with overlaps. These generating functions and their as-
sociated languages are crucial in some of the arguments
below.

5 Generating Functions.

Now we describe the generating functions for the aver-
age internal and external profiles of suffix trees and also
for tries constructed from independent strings. Anal-
ogous, but more complicated, generating functions for
the second moments of the profiles can be established
using a similar methodology, but more intricate string
comparisons must be utilized. So we save derivations for
the second moments for a subsequent paper to appear
in the near future.

We first briefly recall the models under consider-
ation, namely, suffix trees and the tries constructed
from independent strings. We have X = X1X2X3 . . .,
which is a binary string, where the Xj ’s are chosen



according to an (independent) Bernoulli source, with
P(Xj = 0) = p and P(Xj = 1) = q. The first n suffixes
of X are used to generate a suffix tree. Also, we con-
struct a trie from a set of n independent, binary strings
X(1), . . . , X(n), where the ith such string is denoted by
X(i) = X

(i)
1 X

(i)
2 X

(i)
3 . . ., with P(X(i)

j = 0) = p and

P(X(i)
j = 1) = q.
For ease of notation, we write U(z) =∑

n≥0 E(Un,k)zn and B(z) =
∑

n≥0 E(Bn,k)zn as
the ordinary generating functions for the internal
and external profiles (respectively) of a suffix tree.
Similarly, we define Û(z) =

∑
n≥0 E(Ûn,k)zn and

B̂(z) =
∑

n≥0 E(B̂n,k)zn as the analogous OGFs for
the profiles of a trie constructed from independent
strings.

5.1 Generating Function for the Internal Pro-
file of a Suffix Tree. We use combinatorics on words
to describe the internal profile at level k of a suffix tree.
Thus, we restrict our attention to the prefixes of length
k of the first n suffixes of X.

Observation 1. The internal profile Un,k at level k of
a suffix tree constructed from the first n suffixes of X is
exactly the sum of the number of words w ∈ Ak with the
property that w = Xi . . . Xi+k−1 for at least two values
of i with 1 ≤ i ≤ n. In other words, Un,k is the sum of
the number of words w ∈ Ak that appear as prefixes of
at least two of first n suffixes of X.

Lemma 5.1. Consider the polynomial Dw(z) = (1 −
z)Sw(z) + P(w)zm associated with a word w ∈ Am,
where Sw(z) =

∑
i∈P(w) P(wi+1 . . . wm)zm−i denotes

the autocorrelation polynomial of w.
The generating function for the average internal

profile at level k in a suffix tree is

U(z) =
∑

w∈Ak

P(w)z(Dw(z)− (1− z))
(1− z)Dw(z)2

.

Proof. We observe that w ∈ Ak makes a contribution
to the internal profile at level k if and only if X begins
with a word from RwMwA∗ of length n + k − 1, which
happens with probability

[zn+k−1]
(

Rw(z)Mw(z)
1− z

)
.

It follows immediately that∑
n≥0

E(Un,k)zn =
∑

w∈Ak

Rw(z)Mw(z)
(1− z)zk−1

.

Since (see, for instance, [14], [15], [24], and [25]) we have
Rw(z)Mw(z) = P(w)zk(Dw(z) − (1 − z))/Dw(z)2, the
lemma follows immediately. �

5.2 Generating Function for the External Pro-
file of a Suffix Tree. We again use combinatorics on
words, this time to determine the external profile at
level k of a suffix tree.

We are concerned with level k of the suffix tree, so
we let Pn denote the set of prefixes of length k of the
suffixes of X. We consider words of the form wα, where
w ∈ Ak−1 and α ∈ A. We let β = 1− α, so that (α, β)
is either the pair (0, 1) or (1, 0). In terms of trees, wα
and wβ can naturally be viewed as siblings, i.e., children
of the same parent. For example, if wα = 10010 then
wβ = 10011.

Observation 2. The external profile Bn,k at level k of
a suffix tree constructed from the first n suffixes of X
is exactly the sum of the number of words wα for which
two conditions both hold: (1.) wα appears in Pn exactly
once, and (2.) wβ appears in Pn at least once. In other
words, Bn,k is the sum of the number of words wα such
that wα = Xi . . . Xi+k−1 for exactly one value of i with
1 ≤ i ≤ n, while wβ = Xj . . . Xj+k−1 for at least one
value of j with 1 ≤ j ≤ n.

Lemma 5.2. Consider the polynomial Dw(z) = (1 −
z)Sw(z) + P(w)zm associated with a word w ∈ Am,
where Sw(z) =

∑
i∈P(w) P(wi+1 . . . wm)zm−i denotes

the autocorrelation polynomial of w.
The generating function for the average external

profile at level k in a suffix tree is

B(z) =
∑

w∈Ak−1
α∈A

P(wα)z

×

(
1

Dwα(z)2
−

Swβ(z) + (1− Swα(z))P(β)
P(α)

Dw(z)2

)
.

Proof. The probability that wα appears exactly once in
Pn while wβ appears at least once in Pn can be written
in an equivalent way that is easier to interpret in terms
of combinatorics on words. Notice that wα makes a
contribution to the external profile at level k if and only
if X begins with a word from RwαUwα \ R̃wαŨwα. To
see this, we note that in RwαUwα, the word wα appears
exactly once. On the other hand, in each word from
R̃wαŨwα, we note that wα appears once, but wβ never
appears. For this reason, we must remove the subset
R̃wαŨwα from RwαUwα. Finally, we restrict attention
to words of length n + k− 1. So the desired probability
is

[zn+k−1]
(
Rwα(z)Uwα(z)− R̃wα(z)Ũwα(z)

)
.



It follows that∑
n≥0

E(Bn,k)zn =
∑

w∈Ak−1
α∈A

1
zk−1

(
P(wα)zk

Dwα(z)
1

Dwα(z)

− P(wα)zk

Dw(z)

Swβ(z) + (1− Swα(z))P(β)
P(α)

Dw(z)

)
.

The lemma follows easily by simplifying. �

5.3 Generating Function for the Internal Pro-
file of a Trie Constructed from Independent
Strings. We use a simple, direct probabilistic argu-
ment to describe the internal profile at level k of a trie
constructed from n independent strings X(1), . . . , X(n).

We again focus our attention on level k of the trie,
so we are primarily concerned with the prefixes of length
k of each X(i).

Observation 3. The internal profile Ûn,k at level k
of a trie constructed from the n independent strings
X(1), . . . , X(n) is exactly the sum of the number of words
w ∈ Ak with the property that w = X

(i)
1 . . . X

(i)
k for

at least two values of i with 1 ≤ i ≤ n. In other
words, Ûn,k is the sum of the number of words w ∈ Ak

that appear as prefixes of at least two of the strings
X(1), . . . , X(n).

Lemma 5.3. The generating function for the average
internal profile at level k in a trie constructed from n
independent strings is

Û(z) =
∑

w∈Ak

P(w)2z2

(1− z)(1− (1−P(w))z)2
.

Proof. The probability that w ∈ Ak does not appear
as the prefix of any of the strings X(1), . . . , X(n) is
exactly (1 − P(w))n. Similarly, w appears as the
prefix of exactly one of the strings X(1), . . . , X(n) with
probability nP(w)(1−P(w))n−1. So

E(Ûn,k) =
∑

w∈Ak

(
1− (1−P(w))n

− nP(w)(1−P(w))n−1
)
.

Summing E(Ûn,k)zn over all n ≥ 0, the lemma follows
immediately. �

5.4 Generating Function for the External Pro-
file of a Trie Constructed from Independent
Strings. We again use a straightforward probabilistic
argument in order to establish the external profile at
level k of a trie constructed from n independent strings
X(1), . . . , X(n).

We again focus our attention on level k of the trie,
so we are primarily concerned with the prefixes of length
k of the various X(i)’s. As in our previous discussion
of external profiles, we consider words of the form wα,
where w ∈ Ak−1 and α ∈ A. We let β = 1− α.

Throughout the discussion below, we let Pn de-
note the set of prefixes of length k of the strings
X(1), . . . , X(n).

Observation 4. The external profile B̂n,k at level k of
a trie is exactly the sum of the number of words wα
for which two conditions hold, namely, wα appears in
Pn exactly once, and also wβ appears in Pn at least
once. In other words, B̂n,k is the sum of the number of
words wα such that wα appears as a prefix of exactly
one of the strings X(1), . . . , X(n), and also wα’s sibling,
namely wβ, appears as the prefix of at least one of the
strings X(1), . . . , X(n).

Lemma 5.4. The generating function for the average
external profile at level k in a trie constructed from n
independent strings is

B̂(z) =
∑

w∈Ak−1
α∈A

P(wα)z

×
(

1
(1− (1−P(wα))z)2

− 1
(1− (1−P(w))z)2

)
.

Proof. The probability that wα appears exactly once
in Pn while wβ appears at least once in Pn can be
written in an equivalent—but simpler—way. This is
exactly the probability that wα appears exactly once in
Pn (with no restrictions on wβ), minus the probability
that wα appears exactly once in Pn while wβ does
not appear in Pn. We observe that the former is
exactly nP(wα)(1 − P(wα))n−1. We also observe that
the latter is exactly the probability that wα appears
exactly once in Pn and w does not appear as the
prefix of any of the other X(i)’s, namely, the probability
nP(wα)(1−P(w))n−1. So

E(B̂n,k) =
∑

w∈Ak−1
α∈A

nP(wα)
(
(1−P(wα))n−1

− (1−P(w))n−1
)
.

Summing E(B̂n,k)zn over all n ≥ 0, the lemma follows
immediately. �

6 Singularity Analysis

We recall that P(Xj = 0) = p and P(Xj = 1) = q

in the suffix tree model; similarly P(X(i)
j = 0) = p

and P(X(i)
j = 1) = q in the model with independent



strings. Without loss of generality, we assumed that
0 < q ≤ p < 1. We recall that δ =

√
p ; also, ρ > 1 is

defined such that ρδ < 1.
We recall from (4.1) the definition of the autocor-

relation polynomial of a word w ∈ Am as

Sw(z) =
∑

i∈P(w)

P(wi+1 . . . wm)zm−i ,

where P(w) denotes the set of i’s satisfying w1 . . . wi =
wm−i+1 . . . wm. The autocorrelation polynomial Sw(z)
records the extent to which w overlaps with itself. Of
course, every word w has a trivial (complete) overlap
with itself, which provides a contribution of “1” to
Sw(z). With high probability, we observe that the
other overlaps of w with itself are very small, providing
contributions to Sw(z) of much smaller order. We
formalize this notion with the following well-known
lemma, which appears often throughout the literature
of combinatorics on words (see, for instance, [15]). We
use the Iverson notation [[A]] = 1 if A holds, and [[A]] = 0
otherwise.

Lemma 6.1. Consider θ = (1 − pρ)−1, δ =
√

p, and
ρ > 1 with ρδ < 1. When randomly selecting a binary
word w ∈ Ak, the autocorrelation polynomial Sw(z) (at
z = ρ) is approximately 1, with high probability. More
specifically,

∑
w∈Ak

[[ |Sw(ρ)− 1| ≤ (ρδ)kθ ]]P(w) ≥ 1− θδk .

Lemma 6.2. Recall δ =
√

p ; also ρ > 1 is defined
such that ρδ < 1. Consider the polynomial Dw(z) =
(1−z)Sw(z)+P(w)zm associated with a word w ∈ Am,
where Sw(z) =

∑
i∈P(w) P(wi+1 . . . wm)zm−i denotes

the autocorrelation polynomial of w. There exists an
integer K such that, for every word w with |w| ≥ K,
the polynomial Dw(z) has exactly one root in the disk
|z| ≤ ρ.

Throughout the rest of the discussion below, we
fix the “K” mentioned in Lemma 6.2 above, and we
consistently restrict attention to word lengths k ≥ K.

For w with |w| = k ≥ K, since Dw(z) has a unique
root in the disk |z| ≤ ρ, we denote this root as Aw,
and we write Bw = D′

w(Aw) and Cw = D′′
w(Aw). Using

bootstrapping, we have

Aw = 1 +
1

Sw(1)
P(w) + O(P(w)2) ,

Bw = −Sw(1) +
(

k − 2S′w(1)
Sw(1)

)
P(w) + O(P(w)2) ,

Cw = −2S′w(1) +
(

k(k − 1)− 3S′′w(1)
Sw(1)

)
P(w)

+ O(P(w)2) .

(6.2)

Next we compare
∑

n≥0 E(Un,k)zn to
∑

n≥0 E(Ûn,k)zn.
Afterwards, using a similar methodology (but omitting
some of the details) we compare

∑
n≥0 E(Bn,k)zn to∑

n≥0 E(B̂n,k)zn.

7 Comparing Internal Profiles

We define

Q(z) = U(z)− Û(z) =
∑
n≥0

(
E(Un,k)− E(Ûn,k)

)
zn

and the contribution to Q(z) from w as

Q(w)(z) =
P(w)z
1− z

(
Dw(z)− (1− z)

Dw(z)2

− P(w)z
(1− (1−P(w))z)2

)
.

By Lemmas 5.1 and 5.3, we know that

Q(z) =
∑

w∈Ak

Q(w)(z) .

We also define Qn = [zn]Q(z) and Q
(w)
n = [zn]Q(w)(z).

So Qn is exactly E(Un,k) − E(Ûn,k), and Q
(w)
n is the

contribution to Qn from w. Our ultimate goal is to
prove that Qn is asymptotically negligible, i.e., E(Un,k)
and E(Ûn,k) have the same asymptotic growth.

Using Cauchy’s Integral Formula, we have

Q(w)
n =

1
2πi

∮
P(w)z
1− z

(
Dw(z)− (1− z)

Dw(z)2

− P(w)z
(1− (1−P(w))z)2

)
dz

zn+1
,

where the path of integration is a circle about the ori-
gin with counterclockwise orientation. Using a counter-
clockwise, circular path of radius ρ about the origin, we



also define

I(w)
n (ρ) =

1
2πi

∫
|z|=ρ

P(w)z
1− z

(
Dw(z)− (1− z)

Dw(z)2

− P(w)z
(1− (1−P(w))z)2

)
dz

zn+1
.(7.3)

By Cauchy’s theorem, it follows that

Q(w)
n = I(w)

n (ρ)− Res
z=Aw

P(w)z(Dw(z)− (1− z))
(1− z)Dw(z)2zn+1

+ Res
z=1/(1−P(w))

P(w)2z2

(1− z)(1− (1−P(w))z)2zn+1

− Res
z=1

P(w)z(Dw(z)− (1− z))
(1− z)Dw(z)2zn+1

+ Res
z=1

P(w)2z2

(1− z)(1− (1−P(w))z)2zn+1
.

We compute the four relevant residues, namely

Res
z=Aw

P(w)z(Dw(z)− (1− z))
(1− z)Dw(z)2zn+1

=
P(w)

Bw(1−Aw)An
w

+
P(w)Cw

B3
wAn

w

+
P(w)n

B2
wAn+1

w

,

Res
z=1/(1−P(w))

P(w)2z2

(1− z)(1− (1−P(w))z)2zn+1

= (1−P(w))n−1((n− 1)P(w) + 1) ,(7.4)

and

Res
z=1

P(w)z(Dw(z)− (1− z))
(1− z)Dw(z)2zn+1

= −1 ,

Res
z=1

P(w)2z2

(1− z)(1− (1−P(w))z)2zn+1
= −1 .

Now we determine the contribution to Q
(w)
n from the

first two residues in (7.4). We define

fw(x) = − P(w)
Bw(1−Aw)Ax

w

− P(w)Cw

B3
wAx

w

− P(w)x
B2

wAx+1
w

+ (1−P(w))x−1((x− 1)P(w) + 1) .

We want to prove that
∑

w∈Ak fw(x) is asymptotically
small. We first observe that

∑
w∈Ak fw(x) is absolutely

convergent for all x. Then we define f̄w(x) = fw(x) −
fw(0)e−x. Next we utilize the Mellin transform of
f̄w(x). (See [9] and [26] for details about the Mellin
transform.) Since f̄w(x) is exponentially decreasing as
x → +∞, and is O(x) when x → 0, then the Mellin
transform of f̄w(x), namely

f̄∗w(s) =
∫ ∞

0

f̄w(x)xs−1 dx ,

is well-defined for <(s) > 1. We have

f̄∗w(s) = −
(

P(w)
Bw(1−Aw)

+
P(w)Cw

B3
w

)
×
∫ ∞

0

(
1

Ax
w

− 1
)

xs−1 dx

− P(w)
B2

wAw

∫ ∞

0

x

Ax
w

xs−1 dx

+
P(w)

1−P(w)

∫ ∞

0

(1−P(w))xx xs−1 dx

+
∫ ∞

0

((1−P(w))x − 1)xs−1 dx .

Using the well-known properties of the Mellin transform
(see, for instance, [9] and [26]), it follows that

f̄∗w(s) = −
(

P(w)
Bw(1−Aw)

+
P(w)Cw

B3
w

)
× Γ(s)

(
(log Aw)−s − 1

)
− P(w)

B2
wAw

(log Aw)−s−1Γ(s + 1)

+
P(w)

1−P(w)

(
log

1
1−P(w)

)−s−1

Γ(s + 1)

+
((

log
1

1−P(w)

)−s

− 1
)

Γ(s) .

From the bootstrapped equations for Aw, Bw, and Cw

given in (6.2), it follows that

f̄∗w(s) = −
(

1 + O(|w|P(w)2)

+
P(w)2S′w(1)

Sw(1)3
(1 + O(|w|2P(w)))

)
Γ(s)

×
((

P(w)
Sw(1)

)−s

(1 + O(P(w)))− 1
)

− P(w)
Sw(1)2

(1 + O(|w|P(w)))
(

P(w)
Sw(1)

)−s−1

× (1 + O(P(w)))Γ(s + 1)

+
P(w)

1−P(w)
P(w)−s−1(1 + O(P(w)))Γ(s + 1)

+
(
P(w)−s(1 + O(P(w)))− 1

)
Γ(s) ,

which simplifies to

f̄∗w(s) = Γ(s)P(w)−s

(
1− 1

Sw(1)−s

)
(1 + O(P(w)))

+ Γ(s + 1)P(w)−s

(
1− 1

Sw(1)−s+1

)
× (1 + O(|w|P(w))) .



Now we define g∗(s) =
∑

w∈Ak f̄∗w(s). We compute

g∗(s) =
∑

w∈Ak

P(w)−s

(
Γ(s)

(
1− 1

Sw(1)−s

)

+ Γ(s + 1)
(

1− 1
Sw(1)−s+1

))
O(1)

=
∑

w∈Ak

P(w)−s−1

(
Γ(s)

P(w)(Sw(1)−s − 1)
Sw(1)−s

+ Γ(s + 1)
P(w)(Sw(1)−s+1 − 1)

Sw(1)−s+1

)
O(1)

= (sup{q−<(s)−1, 1})kδk(Γ(s) + Γ(s + 1))O(1) ,

where the last equality follows from Lemma 6.1, which
precisely describes the fact that the autocorrelation
polynomial is close to 1 with very high probability. We
note that when s = 0, the pole at Γ(s) is canceled.

We note that there exists c > 0 such that q−cδ < 1.
So g∗(s) is analytic in <(s) ∈ (−1, c). We choose ε > 0
with the property that 0 < ε < c. Then we have

Qn− In(ρ) =
1

2πi

∫ ε+i∞

ε−i∞
g∗(s)n−s ds+

∑
w∈Ak

fw(0)e−x .

The first term is O(n−ε)O((q−cδ)k) since g∗(s) is ana-
lytic in the strip <(s) ∈ (−1, c). The second term is
O(e−x). Finally, Lemma 7.1 (given below) concerning
In(ρ) allows us to complete the proof of Theorem 3.1.
In the statement of Theorem 3.1, we use µ = q−cδ < 1.

Lemma 7.1. Consider δ =
√

p, and ρ > 1 with ρδ < 1.
Recall from (7.3) that

I(w)
n (ρ) =

1
2πi

∫
|z|=ρ

P(w)z
1− z

(
Dw(z)− (1− z)

Dw(z)2

− P(w)z
(1− (1−P(w))z)2

)
dz

zn+1
,

where Dw(z) = (1−z)Sw(z)+P(w)zk for w ∈ Ak. The
sum of I

(w)
n (ρ) over all words w ∈ Ak is asymptotically

negligible, namely∑
w∈Ak

I(w)
n (ρ) = O(ρ−n)O((ρδ)k) .

Proof. There exist constants C1, C2, and K2 such that,
for all k ≥ K2 and all |z| = ρ, we have 1

|Dw(z)|2 ≤ C1

and 1
|1−(1−P(w))z|2 ≤ C2 for all w with |w| = k. The

proof of this useful fact is straightforward and appears,
for instance, in [27]. Thus

|I(w)
n (ρ)| ≤ 2πρ

2π

(
1
C1

sup
|z|=ρ

∣∣∣∣P(w)z
1− z

(Dw(z)− (1− z))
∣∣∣∣

− 1
C2

sup
|z|=ρ

∣∣∣∣P(w)2z2

1− z

∣∣∣∣ ) 1
ρn+1

.

We note that |Dw(z) − (1 − z)| ≤ |1 − z||Sw(z) −
1| + |z|kP(w) ≤ (1 + ρ)(Sw(ρ) − 1) + (pρ)k. Finally,
using Lemma 6.1, which formalizes the notion that
the autocorrelation polynomial is close to 1 with high
probability, the result follows. �

8 Comparing External Profiles

The comparison of the generating functions for the
external profile in a suffix tree and in a trie constructed
from independent strings is performed in the same way
as in the previous section. Due to space constraints,
we omit some of the details here, but we do offer the
following observations for the interested reader. We
observe that

Dwα(Aw) =
(
−Swα(1)

Sw(1)
+ P(α)

)
P(w)

+ O(|w|P(w)2) ,

D′
wα(Aw) = −Swα(1) +

(
k − 2S′wα(1)

Sw(1)

)
P(w)

+ O(P(w)2) .

The relevant residues are

Res
z=Aw

P(wα)z
zn+1

(
1

Dwα(z)2
−

Swβ(z) + (1− Swα(z))P(β)
P(α)

Dw(z)2

)
= P(w)

(
Cw

B3
wAn

w

+
n

B2
wAn+1

w

+
P(α)

Bw(Aw − 1)An
w

+
1

B3
w(Aw − 1)2An+1

w

(
Dwα(Aw)AwBw(n + 1)

− nDwα(Aw)Bw + Aw(1−Aw)(D′
wα(Aw)Bw

−Dwα(Aw)Cw)
))

and

Res
z=Awα

P(wα)z
zn+1

(
1

Dwα(z)2
−

Swβ(z) + (1− Swα(z))P(β)
P(α)

Dw(z)2

)
= −P(wα)

(
Cwα

B3
wαAn

wα

+
n

B2
wαAn+1

wα

)
,

Res
z=1/(1−P(w))

P(wα)
zn+1

z

(
1

(1− (1−P(wα))z)2

− 1
(1− (1−P(w))z)2

)
= (1−P(w))n−1nP(wα) ,

Res
z=1/(1−P(wα))

P(wα)
zn+1

z

(
1

(1− (1−P(wα))z)2

− 1
(1− (1−P(w))z)2

)
= −(1−P(wα))n−1nP(wα) .



The remainder of the proof of Theorem 3.2 is along the
same lines as in the previous section.
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