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Analysis of the multiplicity matching
parameter in suffix trees
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In a suffix tree, the multiplicity matching parameter (MMP)Mn is the number of leaves in the subtree rooted at
the branching point of the(n + 1)st insertion. Equivalently, the MMP is the number of pointers into the database
in the Lempel-Ziv ’77 data compression algorithm. We prove that the MMP asymptotically follows the logarithmic
series distribution plus some fluctuations. In the proof we compare the distribution of the MMP in suffix trees to its
distribution in tries built over independent strings. Our results are derived by both probabilistic and analytic techniques
of the analysis of algorithms. In particular, we utilize combinatorics on words, bivariate generating functions, pattern
matching, recurrence relations, analytical poissonization and depoissonization, the Mellin transform, and complex
analysis.
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1 Introduction
When transmitting data, the goal ofsource coding (data compression)is to represent the source with a
minimum of symbols. On the other hand, the goal ofchannel coding (error correction)is to represent the
source with a minimum of error probability in decoding. These goals are obviously in conflict. Tradition-
ally, additional symbols are transmitted when performing error correction.

In Lonardi and Szpankowski (2003), an algorithm for joint data compression and error correction is
presented; the compression performance is not degraded because the algorithm requires no extra symbols
for error correction. In this scheme, a Reed-Solomon error-correcting code is embedded into the Lempel-
Ziv ’77 data compression algorithm (see Ziv and Lempel (1977)). Lonardi and Szpankowski utilize the
fact that the LZ’77 adaptive data compression algorithm is unable to remove all redundancy from the
source. Our goal here is to precisely determine the number of redundant bits that are available to be
utilized in the aforementioned scheme.

We recall the basic operation of the LZ’77 data compression algorithm. Whenn bits of the source
have already been compressed, the LZ’77 encoder finds the longest prefix of the uncompressed data that
also appears in the database (namely, the compressed portion of the data). The encoder performs the
compression by storing a pointer into the database (and also the length of this prefix, as well as the next
character of the source). Often, this longest prefix appears more than once in the database. Each of the
database entries areequally eligiblefor use by the encoder; thus,any of the analogous pointersinto the
database is suitable. In practice, the choice of pointer among these candidates has no significance. On the
other hand, by judiciously selecting the pointer, some error correction can be performed. For instance, if
two pointers are available, the encoder could easily perform a parity check by choosing the first pointer for
“0” and the second pointer for “1”. Lonardi and Szpankowski’s scheme for performing error correction is
very elaborate. We refer the reader to their paper for more details.

We letMn denote thenumber of pointers into the databasewhenn bits have already been compressed
(as described above). Throughout this paper, we are primarily interested in precisely determining the
asymptotics ofMn. A thorough analysis ofMn yields a characterization of the degree to which error
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correction can be performed in the scheme discussed above. We note thatblog2 Mnc bits are available to
be used for correcting errors.

Tries, especially suffix trees, provide a natural way to studyMn. We work here with strings of characters
drawn independently from the binary alphabetA := {0, 1}. We letp denote the probability of “0” and
q = 1− p denotes the probability of “1”; without loss of generality, we assume thatq ≤ p throughout the
discussion.

We first recall the definition of a binary trie built over a setY of n strings. The construction is recursive.
If |Y| = 0, then the trie is empty. If|Y| = 1, thentrie(Y) is a single node. Finally, if|Y| > 1, thenY is
partitioned into two subsets,Y0 andY1, such that a string is inY0 if its first symbol is 0, and a string is in
Y1 if its first symbol is 1. Thentrie(Y0) andtrie(Y1) are each constructed in the same way, except that
the splitting of sets at thekth step is based on thekth symbol of the string. This completes the definition
of a binary trie.

Now we briefly recall the construction of a binary suffix tree built over a stringX = X1X2X3 . . .. The
wordX(i) = XiXi+1Xi+2 . . . is theith suffix ofX, which begins at theith position ofX. Then a binary
suffix tree is precisely a binary trie built over the firstn suffixes ofX, namelyX(1), X(2), . . . , X(n).

In a suffix tree,Mn is exactly the number of leaves in the subtree rooted at the branching point of the
(n + 1)st insertion (cf. Figure 1). The strings in a suffix tree are highly dependent on each other, which
apparently makes a precise analysis ofMn quite difficult; therefore, we also consider the analogous (but
simpler) situation in a trie built overindependentstrings; namely, we studyM I

n, which is the number of
leaves in the subtree rooted at the branching point of the(n + 1)st insertion in a trie built overn + 1
independentbinary strings. For instance, in Figure 1, we haven = 4 andM I

n = 2 because there are two
leaves (namely,S1 andS2) in the subtree rooted at the branching point of the 5th insertion.

We are primarily concerned with comparing the distribution ofMn (a parameter of suffix trees) to the
distribution ofM I

n (a parameter of tries built over independent strings). Our approach to the proof begins
with the observation that a variety of parameters have the same asymptotic behavior regardless of whether
they correspond to suffix trees or to tries built over independent strings. This was observed in Szpankowski
(1993) and then made precise in Jacquet and Szpankowski (1994), where the typical depth in a suffix tree
is proven to be asymptotically the same as the typical depth in a trie built over independent strings when
the underlying source is i.i.d. An extension of such results to an underlying Markovian model is presented
in Fayolle and Ward (2005).

The limiting distribution of several trie parameters is given in Jacquet and Régnier (1986) and Jacquet
and Ŕegnier (1987). More results about trie parameters are found in Kirschenhofer and Prodinger (1988).
The variance of the external path in a symmetric trie is given in Kirschenhofer et al. (1989). The depth of
a digital trie with an underlying Markovian dependency is analyzed in Jacquet and Szpankowski (1991).
Many results about a variety of tree structures are collected in Szpankowski (2001). Average-case studies
of several parameters of suffix trees are found in Fayolle (2004) and Szpankowski (1993).

We briefly summarize the methodology of our proof. Our goal is to compare the distribution ofMn (the
multiplicity matching parameter of a suffix tree) to the distribution ofM I

n (the MMP of a trie built over
independent strings). Our proof that these two parameters have the same asymptotic distribution consists
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of several steps. We first derive bivariate generating functions forMn andM I
n, denoted asM(z, u) and

M I(z, u), respectively. We noted above that a suffix tree is built over the suffixesX(1), X(2), . . . , X(n)

of a stringX. These suffixes are highly dependent on each other. Therefore, in deriving the bivariate
generating functionM(z, u), an interesting obstacle arises: We need to determine the degree to which
a suffix of X can overlap with itself. Fortunately, the autocorrelation polynomialSw(z) of a wordw
measures the amount of overlap of a wordw with itself. The autocorrelation polynomial was introduced in
Guibas and Odlyzko (1981) and was utilized extensively in Régnier and Szpankowski (1998) and Lothaire
(2005). The autocorrelation polynomial is defined as

Sw(z) =
∑

k∈P(w)

P(wm
k+1)z

m−k (1)

wherem = |w| and whereP(w) denotes the set of positionsk of w satisfyingw1 . . . wk = wm−k+1 . . . wm,
that is,w’s prefix of lengthk is equal tow’s suffix of lengthk. Using the autocorrelation polynomial,
we can overcome the difficulties inherent in the fact that suffixes of a wordX overlap with each other.
By utilizing Sw(z), we are able to obtain a succinct way of describing the bivariate generating function
M(z, u). Fortunately, the autocorrelation polynomial is well-understood. Note that the autocorrelation
polynomialSw(z) has aP(wm

k+1)z
m−k term if and only ifw has an overlap with itself of lengthk. All

wordsw overlap with themselves trivially, so all autocorrelation polynomials have a constant term (i.e.,
zm−m = z0 = 1 term). On the other hand, with high probability,w has very few large nontrivial over-
laps with itself. Therefore, with high probability, all nontrivial overlaps ofw with itself are small; such
overlaps correspond to high-degree terms ofSw(z).

In order to compareM(z, u) andM I(z, u), we utilize complex analysis. Specifically, we take advan-
tage of Cauchy’s theorem, which allows us to analyze the poles of the generating functionsM(z, u) and
M I(z, u) in order to obtain precise information about the distributions ofMn andM I

n. During this residue
analysis, it is necessary that the generating function forMn is analytically continued from the unit disk to
a larger disk.

Our ultimate conclusion is that the distribution of the multiplicity matching parameterMn is asymp-
totically the same in suffix trees and independent tries, i.e.,Mn andM I

n have asymptotically the same
distribution.

The asymptotics for the distribution and factorial moments ofM I
n were given in Ward and Szpankowski

(2004). Specifically,M I
n asymptotically follows the logarithmic series distribution (plus some fluctuations

whenln p/ ln q is rational). Since we prove here thatMn andM I
n have asymptotically the same distribu-

tion, then as a consequence, we see thatMn also asymptotically follows the logarithmic series distribution.
One striking property of this distribution is the high concentration around the mean. We see thatE[Mn] is
asymptotically1

h (whereh denotes the entropy of the source) and alsoMn is highly concentrated around
this average value; this property ofMn is very desirable for the error correction scheme described in
Lonardi and Szpankowski (2003).

This paper is a concise version of the first author’s Ph.D. thesis; see Ward (2005).

2 Main Results
We consider the stringX = X1X2X3 . . ., where theXi’s are i.i.d. random variables onA := {0, 1} with
P(Xi = 0) = p andP(Xi = 1) = q. (Without loss of generality, we assume throughout the discussion
thatq ≤ p.) Let X(i) denote theith suffix of X. In other words,X(i) = XiXi+1Xi+2 . . .. Consider the
longestprefixw of X(n+1) such thatX(i) also hasw as a prefix, for somei with 1 ≤ i ≤ n. ThenMn is
defined as the number ofX(i)’s (with 1 ≤ i ≤ n) that havew as a prefix. So

Mn = #{1 ≤ i ≤ n | X(i) = XiXi+1Xi+2 . . . hasw as a prefix} . (2)

An alternate definition ofMn is available viasuffix trees. First, consider a suffix tree built from the first
n + 1 suffixes ofX. Next, consider theinsertion pointof the (n + 1)st suffix. ThenMn is exactly the
number of leavesin the subtree rooted at the branching point of the(n + 1)st insertion. For instance,
suppose that the(n + 1)st suffix starts withwβ for somew ∈ A∗ andβ ∈ A. Then, examining the firstn
suffixes, if there are exactlyk suffixes that begin withwα (whereα = 1 − β, i.e.,{α, β} = {0, 1}), and
the othern− k suffixes do not begin withw, we conclude thatMn = k.

Unfortunately, the strings in a suffix tree are highly dependent on each other; thus, a precise analysis
of Mn is quite difficult. On the other hand, the asymptotic behavior ofM I

n, an analogous parameter of
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tries built over independent strings, is well-understood. Specifically,M I
n asymptotically follows the loga-

rithmic series distribution (plus some fluctuations whenln p/ ln q is rational). In Ward and Szpankowski
(2004), a precise analysis ofM I

n is given via the analysis of independent tries, using recurrence relations,
analytical poissonization and depoissonization, the Mellin transform, and complex analysis.

To defineM I
n, we consider the situation described above, but we build a trie fromn + 1 independent

strings fromA∗. So we consider independentX(i)’s; specifically, we defineX(i) = X1(i)X2(i)X3(i) . . .,
where{Xj(i) | i, j ∈ N} is a collection of i.i.d. random variables. We letw denote thelongestprefix of
X(n + 1) such thatX(i) also hasw as a prefix, for somei with 1 ≤ i ≤ n. ThenM I

n is defined as the
number ofX(i)’s (with 1 ≤ i ≤ n) that havew as a prefix. So

M I
n = #{1 ≤ i ≤ n | X(i) = X1(i)X2(i)X3(i) . . . hasw as a prefix} . (3)

To defineM I
n via tries, first consider a trie built from then + 1 independent strings fromA∗. Next,

consider theinsertion pointof the(n+1)st string. ThenMn is exactly thenumber of leavesin the subtree
rooted at the branching point of the(n + 1)st insertion. As above, suppose that the(n + 1)st string starts
with wβ. Then, examining the firstn strings, if there are exactlyk strings that begin withwα (again
α = 1− β), and the othern− k strings do not begin withw, we conclude thatM I

n = k.
Since we know from Ward and Szpankowski (2004) thatM I

n follows the logarithmic series distribution
plus some fluctuations, then it suffices to prove thatMn has a similar asymptotic distribution. To accom-
plish this goal, we compare the distribution ofMn in suffix trees to the distribution ofM I

n in independent
tries.

Briefly, our proof technique is the following: We letM(z, u) =
∑

1≤k,n≤∞P(Mn = k)ukzn and
M I(z, u) =

∑
1≤k,n≤∞P(M I

n = k)ukzn denote the bivariate generating functions forMn andM I
n,

respectively. To study these generating functions, we consider thew’s defined above. Specifically, for
M(z, u), we recall from (2) that ifw denotes the longest prefix ofX(n+1) = Xn+1Xn+2Xn+3 . . . that
appears as a prefix of anyX(i) = XiXi+1Xi+2 . . ., thenMn enumerates the number of such occurrences
of w. This approach toM(z, u) allows us to sum over allw ∈ A∗ instead of summing overk, n ∈ N.
Similarly, for M I(z, u), we utilize (3) to see that ifw denotes the longest prefix ofX(n + 1) = X1(n +
1)X2(n + 1)X3(n + 1) . . . that appears as a prefix of anyX1(i)X2(i)X3(i) . . ., thenM I

n is precisely the
number of such occurrences ofw. Therefore, to determineM I(z, u), we can sum over allw ∈ A∗ instead
of summing over the integersk andn.

We note that theX(i)’s are highly dependent on each other. In fact, ifi ≥ j, thenX(i) = XiXi+1Xi+2 . . .
is a substring ofX(j) = XjXj+1Xj+2 . . .. This apparently makes the derivation of the bivariate gener-
ating functionM(z, u) quite difficult. We overcome this hurdle by succinctly describing the degree to
which a suffix ofX can overlap with itself. We accomplish this by utilizing the autocorrelation polyno-
mial Sw(z) of a wordw, which measures the amount of overlap of a wordw with itself. As mentioned
above, the autocorrelation polynomial is defined as

Sw(z) =
∑

k∈P(w)

P(wm
k+1)z

m−k (4)

whereP(w) denotes the set of positionsk of w satisfyingw1 . . . wk = wm−k+1 . . . wm, that is,w’s prefix
of lengthk is equal tow’s suffix of lengthk. Via the autocorrelation polynomial, we are able to surmount
the difficulties inherent in the overlapping suffixes. Thus, usingSw(z), we obtain a succinct description of
the bivariate generating functionM(z, u). The autocorrelation polynomial is well-understood; we utilize
several results aboutSw(z) from Régnier and Szpankowski (1998) and Lothaire (2005). In particular,
when comparingM(z, u) andM I(z, u), it is extremely useful to note that the autocorrelation polynomial
Sw(z) is close to 1 with high probability (for|w| large).

In order to obtain information about the difference of the two BGFs asQ(z, u) = M(z, u)−M I(z, u),
we utilize residue analysis. We make a comparison of the poles ofM(z, u) andM I(z, u) using Cauchy’s
theorem (integrating with respect toz). As a result, we prove thatQn(u) := [zn]Q(z, u) = O(n−ε)
uniformly for |u| ≤ p−1/2 asn →∞. Then we use another application of Cauchy’s theorem (integrating
with respect tou). Specifically, we extract the coefficientP(Mn = k)−P(M I

n = k) = [ukzn]Q(z, u) in
order to prove our main result.

Theorem 2.1 There existε > 0 andb > 1 such that

P(Mn = k)−P(M I
n = k) = O(n−εb−k) (5)

for largen.
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Therefore, the distributions ofMn andM I
n are asymptotically the same. We conclude thatMn also asymp-

totically follows the logarithmic series distribution (plus some fluctuations whenln p/ ln q is rational).

Theorem 2.2 There existε > 0 andεj > 0 (for eachj ∈ N) depending onp such that thejth factorial
moment ofMn is

E[(Mn)j ] = Γ(j)
q(p/q)j + p(q/p)j

h
+ γj(log1/p n) + O(n−εj ) (6)

whereγj is a periodic function with mean 0 and small modulus ifln p/ ln q is rational, and otherwise
γj(x) → 0 asx → ∞. Alsoh = −p log p − q log q denotes the entropy of the source. The probability
generating function ofMn is

E[uMn ] = −q ln (1− pu) + p ln (1− qu)
h

+ γ(log1/p n, u) + O(n−ε) , (7)

for |u| ≤ p−1/2 whereγ(·, u) is a periodic function with mean 0 and small modulus ifln p/ ln q is rational,
and otherwiseγj(u, x) → 0 (uniformly for|u| ≤ p−1/2) asx →∞. More precisely,

E[uMn ] =
∞∑

j=1

pjq + qjp

jh
+

∑
k∈Z\{0}

−e2krπi log1/p nΓ(zk)(pjq + qjp)(zk)j

j!(p−zk+1 ln p + q−zk+1 ln q)

uj + O(n−ε) (8)

whenln p/ ln q = r/t for somer, t ∈ Z, we havezk = 2krπi/ ln p. Therefore, asn → ∞, we conclude
that Mn follows the logarithmic series distribution plus some fluctuations ifln p/ ln q = r/t is rational,
i.e.,

P(Mn = j) =
pjq + qjp

jh
+
∑
k 6=0

−e2krπi log1/p nΓ(zk)(pjq + qjp)(zk)j

j!(p−zk+1 ln p + q−zk+1 ln q)
+ O(n−ε) . (9)

If ln p/ ln q is irrational, thenMn asymptotically follows the logarithmic series distribution, without fluc-
tuations.

Note that the average value ofMn is asymptotically1
h , and alsoMn is highly concentrated around the

mean; this property ofMn is very desirable for the error correction scheme described in Lonardi and
Szpankowski (2003).

3 Proofs
We first derive the bivariate generating functions forMn andM I

n, denoted asM(z, u) andM I(z, u),
respectively. Then we prove a few useful lemmas concerning the autocorrelation polynomial. Next,
we prove thatM(z, u) can be analytically continued from the unit disk to a larger disk. Afterwards, we
determine the poles ofM(z, u) andM I(z, u). We writeQ(z, u) = M(z, u)−M I(z, u); we use Cauchy’s
theorem to thatQn(u) := [zn]Q(z, u) → 0 uniformly for u ≤ p−1/2 asn →∞. Then we apply Cauchy’s
theorem again to prove thatP(Mn = k)−P(M I

n = k) = [ukzn]Q(z, u) = O(n−εb−k) for someε > 0
andb > 1.

We conclude that the distribution of the multiplicity matching parameterMn is asymptotically the same
in suffix trees as in tries built over independent strings, i.e.,Mn andM I

n have asymptotically the same
distribution. Therefore,Mn also follows the logarithmic series distribution plus some fluctuations.

3.1 BGF for the Multiplicity Matching Parameter of Independent Tries
First we obtain the bivariate generating function forM I

n, which is the multiplicity matching parameter for
a trie built over theindependentstringsX(1), . . . , X(n + 1), whereX(i) = X1(i)X2(i)X3(i) . . . and
{Xj(i) | i, j ∈ N} is a collection of i.i.d. random variables withP(Xj(i) = 0) = p andP(Xj(i) = 1) =
q = 1−p. We letw denote thelongest prefixof bothX(n+1) and at least one other stringX(i) for some
1 ≤ i ≤ n. We writeβ to denote the(|w|+ 1)st character ofX(n + 1). WhenM I

n = k, we conclude that
exactlyk stringsX(i) havewα as a prefix, and the othern − k stringsX(i) do not havew as a prefix at
all. Thus the generating function forM I

n is exactly

M I(z, u) :=
∞∑

n=1

∞∑
k=1

P(M I
n = k)ukzn =

∞∑
n=1

∞∑
k=1

∑
w∈A∗
α∈A

P(wβ)
(

n

k

)
(P(wα))k(1−P(w))n−kukzn .

(10)
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After simplifying, it follows immediately that

M I(z, u) =
∑

w∈A∗
α∈A

uP(β)P(w)
1− z(1−P(w))

zP(w)P(α)
1− z(1 + uP(w)P(α)−P(w))

. (11)

Our reasoning aboutM I(z, u) can be applied when we derive generating functionM(z, u) for Mn in the
next section, but the situation will be more complicated, because the occurrences ofw can overlap.

3.2 BGF for the Multiplicity Matching Parameter of Suffix Trees
Now we obtain the bivariate generating function forMn, which is the multiplicity matching parame-
ter for a suffix tree built over the firstn + 1 suffixesX(1), . . . , X(n+1) of a stringX (i.e., X(i) =
XiXi+1Xi+2 . . .). The bivariate generating function for the multiplicity matching parameter is much
more difficult to derive in the dependent (suffix tree) case than in the independent (trie) case, because the
suffixes ofX are dependent on each other. We letw denote thelongest prefixof bothX(n+1) and at least
oneX(i) for some1 ≤ i ≤ n. We writeβ to denote the(|w|+ 1)st character ofX(n+1); whenMn = k,
we conclude that exactlyk suffixesX(i) havewα as a prefix, and the othern− k stringsX(i) do not have
w as a prefix at all. Thus, we are interested in finding strings with exactlyk occurrences ofwα, ended on
the right by an occurrence ofwβ, with no other occurrences ofw at all. This set of words is exactly the
languageRwα(T (α)

w α)k−1T (α)
w β, where

Rw = {v | v contains exactly one occurrence of w, located at the right end}
T (α)

w = {v | wαv contains exactly two occurrences of w, located at the left and right ends}(12)

So, the generating function forMn is

M(z, u) =
∞∑

k=1

∑
w∈A∗
α∈A

∑
s∈Rw

P(sα)z|s|+1u

( ∑
t∈T (α)

w

P(tα)z|t|+1u

)k−1 ∑
v∈T (α)

w

P(vβ)z|v|+1−|w|−1 . (13)

After simplifying the geometric sum, this yields

M(z, u) =
∑

w∈A∗
α∈A

uP(β)
Rw(z)
z|w|

P(α)zT
(α)
w (z)

1−P(α)zuT
(α)
w (z)

. (14)

We note thatRw(z)/z|w| = P(w)/Dw(z) (Régnier and Szpankowski (1998)), whereDw(z) = (1 −
z)Sw(z) + zmP(w) and whereSw(z) denotes the autocorrelation polynomial forw. Recall thatSw(z)
measures the degree to which a wordw overlaps with itself, and specifically

Sw(z) =
∑

k∈P(w)

P(wm
k+1)z

m−k (15)

whereP(w) denotes the set of positionsk of w satisfyingw1 . . . wk = wm−k+1 . . . wm, that is,w’s prefix
of lengthk is equal tow’s suffix of lengthk; also,m = |w|. Returning to (14), it follows that

M(z, u) =
∑

w∈A∗
α∈A

uP(β)P(w)
Dw(z)

P(α)zT
(α)
w (z)

1−P(α)zuT
(α)
w (z)

. (16)

In order to derive an explicit form ofM(z, u), we still need to findT (α)
w (z). If we define

Mw = {v | wv contains exactly two occurrences of w, located at the left and right ends}(17)

then we observe thatαT (α)
w is exactly the subset of words ofMw that begin withα; We useH(α)

w to
denote this subset (i.e.,H(α)

w = Mw ∩ (αA∗)), and thusαT (α)
w = H(α)

w . So (16) simplifies to

M(z, u) =
∑

w∈A∗
α∈A

uP(β)P(w)
Dw(z)

H
(α)
w (z)

1− uH
(α)
w (z)

. (18)
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In order to computeH(α)
w (z), we writeMw = H(α)

w +H(β)
w , whereH(β)

w is the subset of words fromMw

that start withβ (i.e.,H(β)
w = Mw ∩ (βA∗)). (Note that every word ofMw begins with eitherα or β,

because the empty wordε /∈ Mw.) The following useful lemma is the last necessary ingredient to obtain
an explicit formula forM(z, u) from (18).

Lemma 3.1 LetH(α)
w denote the subset of words fromMw that start withα. Then

H(α)
w (z) =

Dwα(z)− (1− z)
Dw(z)

. (19)

Proof We use the concepts and notation from Régnier and Szpankowski (1998) and Lothaire (2005)
throughout. In particular, we define

Uw = {v | wv contains exactly one occurrence of w (located at the left end)} (20)

and we recall from (12) and (17) above that

Rw = {v | v contains exactly one occurrence of w, located at the right end}
Mw = {v | wv contains exactly two occurrences of w, located at the left and right ends}(21)

The following notation is similar but slightly adapted for our proof.

U (α)
w = {v | v starts with α, and wv has exactly 1 occurrence of wα and no occurrences of wβ} .

(22)
We note that the set of words with no occurrences ofwβ is exactlyA∗ \ Rwβ(Mwβ)∗Uwβ , which has
generating function

1
1− z

− Rwβ(z)Uwβ(z)
1−Mwβ(z)

. (23)

Now we describe the set of words with no occurrences ofwβ in a different way. The set of words with no
occurrences ofwβ and at least one occurrence ofwα is exactlyRw(H(α)

w )∗U (α)
w , which has generating

functionRw(z)U (α)
w (z)/(1−H

(α)
w (z)). The set of words with no occurrences ofwβ and no occurrences

of wα is exactlyRw + (A∗ \Rw(Mw)∗U). (Note that the set of such words that end inw is exactlyRw;
on the other hand, the set of such words that do not end inw is exactlyA∗ \ Rw(Mw)∗U .) So the set
of words with no occurrences ofwα and no occurrences ofwβ has generating functionRw(z) + 1/(1−
z)−Rw(z)Uw(z)/(1−Mw(z)). So the set of words with no occurrences ofwβ has generating function

Rw(z)U (α)
w (z)

1−H
(α)
w (z)

+ Rw(z) +
1

1− z
− Rw(z)Uw(z)

1−Mw(z)
. (24)

Combining (23) and (24), it follows that

1
1− z

− Rwβ(z)Uwβ(z)
1−Mwβ(z)

=
Rw(z)U (α)

w (z)

1−H
(α)
w (z)

+ Rw(z) +
1

1− z
− Rw(z)Uw(z)

1−Mw(z)
. (25)

Now we find the generating function forU (α)
w . For each wordv ∈ U (α)

w , eitherwv has exactly one or two
occurrences ofw. The subset ofU (α)

w of the first type is exactlyV (α)
w := Uw ∩ (αA∗), i.e., the subset of

words fromUw that start withα. The subset ofU (α)
w of the second type is exactlyH(α)

w . We observe that

V(α)
w · A = (H(α)

w + V(α)
w ) \ {α} (26)

(see Ward (2005)), soV (α)
w (z) = (H(α)

w (z)−P(α)z)/(z− 1). SinceU (α)
w = V(α)

w +H(α)
w , it follows that

U (α)
w (z) =

H
(α)
w (z)−P(α)z

z − 1
+ H(α)

w (z) =
zH

(α)
w (z)−P(α)z

z − 1
. (27)

Recalling equation (25), we see that

1
1− z

− Rwβ(z)Uwβ(z)
1−Mwβ(z)

=
Rw(z)(zH

(α)
w (z)−P(α)z)

(1−H
(α)
w (z))(z − 1)

+ Rw(z) +
1

1− z
− Rw(z)Uw(z)

1−Mw(z)
. (28)
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Simplifying, and usingUw(z) = (1−Mw(z))/(1−z) andUwβ(z) = (1−Mwβ(z))/(1−z) (see Ŕegnier
and Szpankowski (1998)), it follows that

Rwβ(z)
Rw(z)

=
zP(β)

1−H
(α)
w (z)

. (29)

Solving forH(α)
w (z) and then usingRw(z) = zmP(w)/Dw(z) andRwβ(z) = zm+1P(w)P(β)/Dwβ(z)

(see Ŕegnier and Szpankowski (1998)), it follows that

H(α)
w (z) =

Dw(z)−Dwβ(z)
Dw(z)

. (30)

NoteDw(z)−Dwβ(z) = (1−z)Sw(z)+zmP(w)−(1−z)Swβ(z)−zm+1P(w)P(β) = (1−z)(Swα(z)−
1) + zm+1P(w)P(α) = Dwα(z)− (1− z). Thus, (30) completes the proof of the lemma.

2

Using the lemma above, we finally observe a form ofM(z, u) that we summarize below.

Theorem 3.1 Let M(z, u) :=
∑∞

n=1

∑∞
k=1 P(Mn = k)ukzn denote the bivariate generating function

for Mn, the multiplicity matching parameter of a suffix tree built over the firstn+1 suffixesX(1), . . . , X(n+1)

of a stringX. Then

M(z, u) =
∑

w∈A∗
α∈A

uP(β)P(w)
Dw(z)

Dwα(z)− (1− z)
Dw(z)− u(Dwα(z)− (1− z))

(31)

for |u| < 1 and|z| < 1. HereDw(z) = (1− z)Sw(z)+ zmP(w), andSw(z) denotes the autocorrelation
polynomial forw, defined in (1).

3.3 On the Autocorrelation Polynomial
Throughout the rest of our analysis we assume that, without loss of generality,p ≥ q. Note thatp ≤√

p < 1, so there existsρ > 1 such thatρ
√

p < 1 (and thusρp < 1 too). Finally, defineδ =
√

p.
We establish a few lemmas about the autocorrelation polynomial that will be important for our analysis.
Recall that the autocorrelation polynomial isSw(z) =

∑
k∈P(w) P(wm

k+1)z
m−k, whereP(w) denotes the

set of positionsk of w satisfyingw1 . . . wk = wm−k+1 . . . wm, that is,w’s prefix of lengthk is equal to
w’s suffix of lengthk.

The autocorrelation polynomialSw(z) has aP(wm
k+1)z

m−k term if and only ifw has an overlap with
itself of lengthk. Since each wordw overlaps with itself trivially, then every autocorrelation polynomial
has a constant term (i.e.,zm−m = z0 = 1 term). With high probability, however,w has very few large
nontrivial overlaps with itself. Therefore, with high probability, all nontrivial overlaps ofw with itself are
small; such overlaps correspond to high-degree terms ofSw(z). Therefore, whenw is a randomly chosen
long word, thenSw(z) is very close to 1 with very high probability. The first lemma makes this notion
mathematically precise.

Lemma 3.2 If θ = (1− pρ)−1 > 1, then∑
w∈Ak

[[|Sw(ρ)− 1| ≤ (ρδ)kθ]]P(w) ≥ 1− δkθ (32)

where[[A]] = 1 if A holds, and[[A]] = 0 otherwise.

Proof Our proof is the one given in Fayolle and Ward (2005). Note thatSw(z)− 1 has a term of degree
i ≤ j if and only if m− i ∈ P(w) with 1 ≤ i ≤ j. Therefore, for each suchi and eachw1 . . . wi, there is
exactly one wordwi+1 . . . wk such thatSw(z)− 1 has a term of degreei. Therefore, for fixedj andk,∑

w∈Ak

[[Sw(z)− 1 has a term of degree ≤ j]]P(w)

≤
∑

1≤i≤j

∑
w1,...,wi∈Ai

P(w1 . . . wi)
∑

wi+1,...,wk∈Ak−i

[[Sw(z)− 1 has a term of degree i]]P(wi+1 . . . wk)

≤
∑

1≤i≤j

∑
w1,...,wi∈Ai

P(w1 . . . wi)pk−i =
∑

1≤i≤j

pk−i ≤ pk−j

1− p
(33)
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We usej = bk/2c. Thus
∑

w∈Ak [[all terms of Sw(z)− 1 have degree > bk/2c]]P(w) ≥ 1− δkθ.
Note that, if all terms ofSw(z)− 1 havedegree > bk/2c, then

|Sw(ρ)− 1| ≤
∑

i>bk/2c

(ρp)i =
(ρp)bk/2c+1

1− ρp
≤ (ρp)k/2

1− ρp
≤ ρkpk/2

1− ρp
= (ρδ)kθ . (34)

This completes the proof of the lemma. 2

Using this lemma, we can quickly obtain another result that is similar but slightly stronger.
First consider wordsw such that|Sw(ρ) − 1| ≤ (ρδ)kθ. Write Sw(z) =

∑k−1
i=0 aiz

i andSwα(z) =∑k
i=0 biz

i. Observe that eitherbi = 0 or bi = ai. The following lemma follows immediately:

Lemma 3.3 If θ = (1− pρ)−1 + 1 andα ∈ A, then∑
w∈Ak

[[max{|Sw(ρ)− 1|, |Swα(ρ)− 1|} ≤ (ρδ)kθ]]P(w) ≥ 1− δkθ . (35)

Also, the autocorrelation polynomial is never too small. In fact

Lemma 3.4 Definec = 1 − ρ
√

p > 0. Then there exists an integerK ≥ 1 such that, for|w| ≥ K and
|z| ≤ ρ and|u| ≤ δ−1,

|Sw(z)− uSwα(z) + u| ≥ c . (36)

Proof The proof consists of considering several cases. The only condition forK is (1 + δ−1) (pρ)K/2

1−pρ ≤
c/2. The analysis is not difficult; all details are presented in Ward (2005). 2

3.4 Analytic Continuation
Our goal in this section is to prove the following:

Theorem 3.2 The generating functionM(z, u) can be analytically continued for|u| ≤ δ−1 and|z| < 1.

The proof requires several lemmas and observations. We always assume|u| ≤ δ−1.

Lemma 3.5 If 0 < r < 1, then there existsC > 0 and an integerK1 (both depending onr) such that

|Dw(z)− u(Dwα(z)− (1− z))| ≥ C (37)

for |w| ≥ K1 and|z| ≤ r (and, as before,|u| ≤ δ−1).

Proof Consider theK andc defined in Lemma 3.4, which tells us that, for all|w| ≥ K, we have

|Sw(z)− uSwα(z) + u| ≥ c (38)

for |z| ≤ ρ. So, for|w| ≥ K, we have|Dw(z)− u(Dwα(z)− (1− z))| ≥ (1− r)c− rmpm(1− δ−1rp).
Note thatrmpm(1− δ−1rp) → 0 asm →∞. Therefore, replacingK by a largerK1 if necessary, we can
without loss of generality assume thatrmpm(1 − δ−1rp) ≤ (1 − r)c/2. So we defineC = (1 − r)c/2,
and the result follows immediately. 2

Now we can strengthen the previous lemma by dropping the “K1”, i.e., by not requiringw to be a long
word:

Lemma 3.6 If 0 < r < 1, then there existsC > 0 (depending onr) such that

|Dw(z)− u(Dwα(z)− (1− z))| ≥ C (39)

for |z| ≤ r (and, as before,|u| ≤ δ−1).

Proof Consider theK1 defined in Lemma 3.5. LetC0 denote the “C” from Lemma 3.5. There are
only finitely manyw’s with |w| < K1, sayw1, . . . , wi. For each suchwj (with 1 ≤ j ≤ i), we note
that Dwj

(z) − u(Dwjα(z) − (1 − z)) 6= 0 for |z| ≤ r and |u| ≤ δ−1, so there existsCj > 0 such
that |Dwj

(z) − u(Dwjα(z) − (1 − z))| ≥ Cj for all |z| ≤ r and |u| ≤ δ−1. Finally, we defineC =
min{C0, C1, . . . , Ci}. 2

Finally, we prove Theorem 3.2.
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Proof Consider|z| ≤ r < 1. We proved in Lemma 3.6 there existsC > 0 depending onr such that, for
all |u| ≤ δ−1, we have 1

|Dw(z)−u(Dwα(z)−(1−z))| ≤
1
C . Settingu = 0, we also have 1

|Dw(z)| ≤
1
C . Thus

|M(z, u)| ≤ P(β)δ−1

C2

∑
α∈A

∑
w∈A∗

P(w)|Dwα(z)− (1− z)| . (40)

Now we use Lemma 3.3. Considerw andα with max{|Sw(ρ)− 1|, |Swα(ρ)− 1|} ≤ (ρδ)mθ. It follows
immediately that

|Dwα(z)−(1−z)| = |(1−z)(Swα(z)−1)+zm+1P(w)P(α)| ≤ (1+r)(ρδ)mθ+rm+1pmp = O(sm) ,
(41)

wheres = max{ρδ, rp}. Now consider the otherw’s andα’s. We have

|Dwα(z)−(1−z)| = |(1−z)(Swα(z)−1)+zm+1P(w)P(α)| ≤ (1 + r)pρ

1− pρ
+rm+1pmp ≤ (1 + r)pρ

1− pρ
+1 ,

(42)
so we defineC1 = (1+r)pρ

1−pρ + 1 to be a value which only depends onr (recall thatr is fixed here). Thus

|M(z, u)| ≤ P(β)δ−1

C2

∑
α∈A

∑
m≥0

∑
w∈Am

|P(w)(Dwα(z)− (1− z))|

≤ P(β)δ−1

C2

∑
α∈A

∑
m≥0

|(1− δmθ)O(sm) + δmθC1| ≤
P(β)δ−1

C2

∑
α∈A

∑
m≥0

O(sm) = O(1)(43)

and this completes the proof of the theorem. 2

3.5 Singularity Analysis
We first determine (for|u| ≤ δ−1) the zeroes ofDw(z) − u(Dwα(z) − (1 − z)) and (in particular) the
zeroes ofDw(z).

Lemma 3.7 There exists an integerK2 ≥ 1 such that, foru fixed (with|u| ≤ δ−1) and |w| ≥ K2, there
is exactly one root ofDw(z)− u(Dwα(z)− (1− z)) in the closed disk{z | |z| ≤ ρ}.

Proof Let K andc be defined as in Lemma 3.4. Without loss of generality (replacingK by a largerK2,
if necessary), we can also assume that2(pρ)K2 < c(ρ− 1) andK2 ≥ K1 (whereK1 is defined in Lemma
3.5). Also, we can chooseK2 large enough (for use later) such that∃c2 > 0 with

ρ(1− pK2(1 + δ−1p))− 1 > c2 and thus ρ(1− pK2)− 1 > c2 . (44)

We recall0 < pρδ−1 < 1, and thus0 < 1 − pρδ−1 < 1. Since|u| < δ−1 and |z| ≤ ρ, then for
|w| ≥ K2 we have|P(w)zm(1 − uzP(α))| ≤ (pρ)m(1 + δ−1ρp) ≤ 2(pρ)m < c(ρ − 1) ≤ |(Sw(z) −
uSwα(z) + u)(ρ − 1)|. Therefore, forz on the circle{z | |z| = ρ}, we have|P(w)zm(1 − uzP(α))| <
|(Sw(z)− uSwα(z) + u)(z − 1)|. Equivalently,

|(Dw(z)− u(Dwα(z)− (1− z)))− ((Sw(z)− uSwα(z) + u)(z − 1))| < |(Sw(z)−uSwα(z)+u)(z−1)| .
(45)

Therefore, by Rouch́e’s Theorem,Dw(z) − u(Dwα(z) − (1 − z)) and(Sw(z) − uSwα(z) + u)(z − 1)
have the same number of zeroes inside the disk{z | |z| ≤ ρ}. Since|Sw(z) − uSwα(z) + u| ≥ c inside
this disk, we conclude that(Sw(z)−uSwα(z)+u)(z− 1) has exactly one root in the disk. It follows that
Dw(z)− u(Dwα(z)− (1− z)) also has exactly one root in the disk. 2

Whenu = 0, this lemma implies (for|w| ≥ K2) thatDw(z) has exactly one root in the disk{z | |z| ≤ ρ}.
Let Aw denote this root, and letBw = D′

w(Aw). Also letCw(u) denote the root ofDw(z)−u(Dwα(z)−
(1− z)) in the closed disk{z | |z| ≤ ρ}. Finally, we define

Ew(u) :=
(

d

dz
(Dw(z)− u(Dwα(z)− (1− z)))

)∣∣∣∣
z=Cw

= D′
w(Cw)− u(D′

wα(Cw) + 1) . (46)

We have precisely determined the singularities ofM(z, u). Next, we make a comparison ofM(z, u) to
M I(z, u), in order to show thatMn andM I

n have asymptotically similar behaviors.
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3.6 Comparing Suffix Trees to Tries
Now we define

Q(z, u) = M(z, u)−M I(z, u) . (47)

Using the notation from (11) and (31), if we write

M I
w,α(z, u) =

uP(β)P(w)
1− z(1−P(w))

zP(w)P(α)
1− z(1 + uP(w)P(α)−P(w))

Mw,α(z, u) =
uP(β)P(w)

Dw(z)
Dwα(z)− (1− z)

Dw(z)− u(Dwα(z)− (1− z))
(48)

then we have proven that

Q(z, u) =
∑

w∈A∗
α∈A

(Mw,α(z, u)−M I
w,α(z, u)) . (49)

We also defineQn(u) = [zn]Q(z, u). We denote the contribution toQn(u) from a specificw andα as
Q

(w,α)
n (u) = [zn](Mw,α(z, u)−M I

w,α(z, u)). Then we observe that

Q(w,α)
n (u) =

1
2πi

∮
(Mw,α(z, u)−M I

w,α(z, u))
dz

zn+1
(50)

where the path of integration is a circle about the origin with counterclockwise orientation.
We define

Iw,α(ρ, u) =
1

2πi

∫
|z|=ρ

(Mw,α(z, u)−M I
w,α(z, u))

dz

zn+1
. (51)

By Cauchy’s theorem, we observe that the contribution toQn(u) from a specificw andα is exactly

Q(w,α)
n (u) = Iw,α(ρ, u)− Res

z=Aw

Mw,α(z, u)
zn+1

− Res
z=Cw(u)

Mw,α(z, u)
zn+1

+ Res
z=1/(1−P(w))

M I
w,α(z, u)
zn+1

+ Res
z=1/(1+uP(w)P(α)−P(w))

M I
w,α(z, u)
zn+1

. (52)

To simplify this expression, note that

Res
z=Aw

Mw,α(z, u)
zn+1

= −P(β)P(w)
Bw

1
An+1

w

Res
z=Cw(u)

Mw,α(z, u)
zn+1

=
P(β)P(w)

Ew(u)
1

Cw(u)n+1

Res
z=1/(1−P(w))

M I
w,α(z, u)
zn+1

= P(β)P(w)(1−P(w))n

Res
z=1/(1+uP(w)P(α)−P(w))

M I
w,α(z, u)
zn+1

= −P(β)P(w)(1 + uP(w)P(α)−P(w))n (53)

It follows from (52) that

Q(w,α)
n (u) = Iw,α(ρ, u) +

P(β)P(w)
Bw

1
An+1

w

− P(β)P(w)
Ew(u)

1
Cw(u)n+1

+ P(β)P(w)(1−P(w))n −P(β)P(w)(1 + uP(w)P(α)−P(w))n . (54)

We next determine the contribution of thez = Aw terms ofM(z, u) and thez = 1/(1−P(w)) terms of
M I(z, u) to the differenceQn(u) = [zn](M(z, u)−M I(z, u)).

Lemma 3.8 The “Aw terms” and the “1/(1−P(w)) terms” (for |w| ≥ K2) altogether have onlyO(n−ε)
contribution toQn(u), i.e.,

∑
|w|≥K2

α∈A

(
− Res

z=Aw

Mw,α(z, u)
zn+1

+ Res
z=1/(1−P(w))

M I
w,α(z, u)
zn+1

)
= O(n−ε) , (55)

for someε > 0.
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Proof We define

fw(x) =
1

Ax+1
w Bw

+ (1−P(w))x (56)

for x real. So by (53) it suffices to prove that∑
|w|≥K2

α∈A

P(β)P(w)fw(x) = O(x−ε) . (57)

Note that
∑

|w|≥K2
α∈A

P(β)P(w)fw(x) is absolutely convergent for allx. Also f̄w(x) = fw(x)−fw(0)e−x

is exponentially decreasing whenx → +∞ and isO(x) whenx → 0 (notice that we utilize thefw(0)e−x

term in order to make sure that̄fw(x) = O(x) whenx → 0; this provides a fundamental strip for the
Mellin transform in the next step). Therefore, its Mellin transform̄f∗w(s) =

∫∞
0

f̄w(x)xs−1 dx is well-
defined for<(s) > −1 (see Flajolet et al. (1995) and Szpankowski (2001)). We compute

f̄∗w(s) = Γ(s)
(

(log Aw)−s − 1
AwBw

+ (− log(1−P(w)))−s − 1
)

(58)

whereΓ denotes the Euler gamma function, and we note that

(log Aw)−s =
(

P(w)
Sw(1)

)−s

(1 + O(P(w)))

(− log(1−P(w)))−s = P(w)−s(1 + O(P(w))) (59)

Also

Aw = 1 +
1

Sw(1)
P(w) + O(P(w)2)

Bw = −Sw(1) +
(
−2S′w(1)

Sw(1)
+ m

)
P(w) + O(P(w)2) (60)

Therefore
1

AwBw
= − 1

Sw(1)
+ O(|w|P(w)) (61)

Sof̄∗w(s) = Γ(s)
((
− 1

Sw(1) +O(|w|P(w))
)((

P(w)
Sw(1)

)−s

(1+O(P(w)))−1
)
+P(w)−s(1+O(P(w)))−

1
)

= Γ(s)
(
P(w)−s

(
−Sw(1)s−1 + 1 + O(|w|P(w))

)
+ 1

Sw(1) − 1 + O(|w|P(w))
)

.

We defineg∗(s) =
∑

|w|≥K2
α∈A

P(β)P(w)f̄∗w(s). Then we compute

g∗(s) =
∑
α∈A

P(β)
∑

|w|≥K2

P(w)f̄∗w(s) =
∑
α∈A

P(β)Γ(s)
∞∑

m=K2

(
sup{q−<(s), 1}δ

)m

O(1) , (62)

where the last equality is true because1 ≥ p−<(s) ≥ q−<(s) when<(s) is negative, and also because
q−<(s) ≥ p−<(s) ≥ 1 when<(s) is positive. We always haveδ < 1. Also, there existsc > 0 such
that q−cδ < 1. Therefore,g∗(s) is analytic in<(s) ∈ (−1, c). Working in this strip, we chooseε with
0 < ε < c. Then we have∑

|w|≥K2
α∈A

P(β)P(w)fw(x) =
1

2πi

∫ ε+i∞

ε−i∞
g∗(s)x−sds +

∑
|w|≥K2

α∈A

P(β)P(w)fw(0)e−x . (63)

Majorizing under the integral, we see that the first term isO(x−ε) sinceg∗(s) is analytic in the strip
<(s) ∈ (−1, c) (and−1 < ε < c). Also, the second term isO(e−x). This completes the proof of the
lemma. 2

Now we bound the contribution toQn(u) from the Cw(u) terms ofM(z, u) and thez = 1/(1 +
uP(w)P(α)−P(w)) terms ofM I(z, u).
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Lemma 3.9 The “Cw(u) terms” and the “1/(1+uP(w)P(α)−P(w)) terms” (for |w| ≥ K2) altogether
have onlyO(n−ε) contribution toQn(u), for someε > 0. More precisely,

∑
|w|≥K2

α∈A

(
− Res

z=Cw(u)

Mw,α(z, u)
zn+1

+ Res
z=1/(1+uP(w)P(α)−P(w))

M I
w,α(z, u)
zn+1

)
= O(n−ε) . (64)

Proof The proof technique is the same as the one for Lemma 3.8 above. 2

Next we prove that theIw,α(ρ, u) terms in (54) haveO(n−ε) contribution toQn(u).

Lemma 3.10 The “Iw,α(ρ, u) terms” (for |w| ≥ K2) altogether have onlyO(n−ε) contribution to
Qn(u), for someε > 0. More precisely,∑

|w|≥K2
α∈A

Iw,α(ρ, u) = O(n−ε) . (65)

Proof Here we only sketch the proof. A rigorous proof is given in Ward (2005). Recall that

Iw,α(ρ, u) =
1

2πi

∫
|z|=ρ

uP(β)P(w)
(

1
Dw(z)

Dwα(z)− (1− z)
Dw(z)− u(Dwα(z)− (1− z))

− 1
1− z(1−P(w))

zP(w)P(α)
1− z(1 + uP(w)P(α)−P(w))

)
dz

zn+1
. (66)

By Lemma 3.7,K2 was selected to be sufficiently large such that(ρp)m(1− δ−1ρp) ≤ (ρ− 1)c/2. Thus,
writing C1 = (ρ−1)c/2, we have1/|Dw(z)−u(Dwα(z)−(1−z))| ≤ 1/C1 and thus1/|Dw(z)| ≤ 1/C1.
Also 1/|1− z(1−P(w))| ≤ 1/c2 and1/|1− z(1+uP(w)P(α)−P(w))| ≤ 1/c2 by (44). So we obtain

|Iw,α(ρ, u)| = O(ρ−n)P(w)(Swα(ρ)− 1) + O(ρ−n)P(w)O((pρ)m) . (67)

Thus, by Lemma 3.3,
∑

α∈A
∑

|w|=m |Iw,α(ρ, u)| = O(ρ−n)O((ρδ)m). We conclude
∑

|w|≥K2
α∈A

|Iw,α(ρ, u)| =
O(ρ−n), and the lemma follows. 2

Finally, we consider the contribution toQn(u) from small words|w|. Basically, we prove that|w| has
a normal distribution with mean1h log n and varianceθ log n, whereh = −p log p − q log q denotes the
entropy of the source, andθ is a constant. Therefore,|w| ≤ K2 is extremely unlikely, and as a result, the
contribution toQn(u) from wordsw with |w| ≤ K2 is very small.

Lemma 3.11 The terms
∑

|w|<K2
α∈A

(Mw,α(z, u)−M I
w,α(z, u)) altogether have onlyO(n−ε) contribution

to Qn(u).

Proof Let Dn denote the depth of the(n + 1)st insertion in a suffix tree, i.e.,Dn < k if and only if

Xn+1 . . . Xn+k 6= Xi+1 . . . Xi+k for all 0 ≤ i < n (68)

i.e.,Dn = |w| in the notation of Section 3.2. Similarly, letDI
n denote the depth of the(n + 1)st insertion

in a trie built overn + 1 independent strings, i.e.,DI
n < k if and only if

X1(n + 1) . . . Xk(n + 1) 6= X1(i) . . . Xk(i) for all 1 ≤ i ≤ n (69)

i.e.,DI
n = |w| in the notation of Section 3.1.

Therefore,

[zn]
∑

|w|<K2
α∈A

(Mw,α(z, u)−M I
w,α(z, u)) =

∑
i<K2

n∑
k=1

(
P(Mn = k & Dn = i)−P(M I

n = k & DI
n = i)

)
uk .

(70)
Noting thatP(Mn = k & Dn = i) ≤ P(Dn = i) andP(M I

n = k & DI
n = i) ≤ P(DI

n = i), it follows
that

[zn]
∑

|w|<K2
α∈A

|Mw,α(z, u)−M I
w,α(z, u)| ≤

∑
i<K2

n∑
k=1

(
P(Dn = i) + P(DI

n = i)
)
|u|k . (71)
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In Jacquet and Szpankowski (1994), thetypicaldepthDT
n+1 in a trie built overn+1 independent strings

was shown to be asymptotically normal with mean1
h log(n + 1) and varianceθ log(n + 1). We observe

thatDI
n (defined in (69)) andDT

n+1 have the same distribution; to see this, observe thatP(DI
n < k) =∑

|w|=k P(w)(1 − P(w))n = P(DT
n+1 < k). Therefore,DI

n is also asymptotically normal with mean
1
h log n and varianceθ log n. In Ward (2005), we rigorously prove thatDI

n andDn have asymptotically
the same distribution, namely, a normal distribution with mean1

h log(n + 1) and varianceθ log(n + 1).
Therefore, considering (71) (and noting thatK2 is a constant), it follows that

[zn]
∑

|w|<K2
α∈A

|Mw,α(z, u)−M I
w,α(z, u)| = O(n−ε) . (72)

This completes the proof of the lemma. 2

All contributions to (54) have now been analyzed. We are finally prepared to summarize our results.

3.7 Summary and Conclusion
Combining the last four lemmas, we see thatQn(u) = O(n−ε) uniformly for |u| ≤ δ−1, whereδ−1 > 1.
For ease of notation, we defineb = δ−1. Finally, we apply Cauchy’s theorem again. We compute

P(Mn = k)−P(M I
n = k) = [ukzn]Q(z, u) = [uk]Qn(u) =

1
2πi

∫
|u|=b

Qn(u)
uk+1

du . (73)

SinceQn(u) = O(n−ε), it follows that

|P(Mn = k)−P(M I
n = k)| ≤ 1

|2πi|
(2πb)

O(n−ε)
bk+1

= O(n−εb−k) . (74)

So Theorem 2.1 holds. It follows thatMn andM I
n have asymptotically the same distribution, and therefore

Mn andM I
n asymptotically have the same factorial moments. The main result of Ward and Szpankowski

(2004) gives the asymptotic distribution and factorial moments ofM I
n. As a result, Theorem 2.2 follows

immediately. Therefore,Mn follows the logarithmic series distribution, i.e.,P(Mn = j) = pjq+qjp
jh (plus

some small fluctuations ifln p/ ln q is rational).
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