
Error Resilient LZ’77 Scheme and Its Analysis1

Stefano Lonardi
Dept. of Computer Science
University of California
Riverside, CA 92521

e-mail: stelo@cs.ucr.edu

Wojciech Szpankowski
Dept. of Computer Sciences

Purdue University
West Lafayette, IN 47907

email: spa@cs.purdue.edu

Mark Daniel Ward
Dept. of Mathematics
Purdue University

West Lafayette, IN 47907

e-mail: mward@math.purdue.edu

The devastating effect of errors in adaptive data com-
pression is a long-standing open problem. In fact, the non-
resilience of adaptive data compression has been a practical
drawback of its use in many applications. We shall argue here
that practically there is no need for additional overhead in or-
der to correct errors in LZ’77. This seemingly impossible goal
is achieved in practice due to the fact that the LZ’77 encoder
is unable to decorrelate completely the input sequence.

Our error-resilient LZ’77 encoder is based on the following
observation. We observe theoretically and experimentally (cf.
[1]) that in a significant proportion of LZ’77 phrases, there is
more than one copy of the longest prefix in the compressed
file (cf. Theorem 1). More precisely, we define a position
i in the text corresponding to the beginning of a phrase to
have multiplicity r if there exist exactly r matches for the
longest prefix that starts at position i. We call Mn the ran-
dom variable associated with the multiplicity of a sequence
of length n generated by a binary memoryless source (with p
being the probability of generating “0”, and q = 1 − p). In
Theorem 2 we prove that the random variable Mn follows the
logarithmic series distribution (plus some fluctuations), that
is, P (Mn = j) ≈ (1/h)(pjq + qjp)/j, where h is the entropy
rate.

The positions with multiplicity r > 1 are the ones that can
be used to embed some of the bits of another binary string,
called the message. Specifically, the next �log2(r)� bits of the
message will drive the selection of one particular pointer out
of the r choices. These additional bits can be used for various
purposes such as authentication/integrity or error correction,
as described next.

Once the redundant bits of LZ’77 have been identified, we
exploit them for channel coding. For error detection and cor-
rection, we choose RS(255, 255 − 2e) Reed-Solomon codes.
The 2e extra parity bytes constitute the message that will be
embedded in the redundant bits of LZ’77. The error-resilient
encoder first compresses the input sequence using standard
LZ’77. The data is broken into blocks of size 255− 2e. Then,
blocks are processed in reverse order, beginning with the very
last. When processing block i, the encoder computes first the
Reed-Solomon parity bits for the block i+ 1 and then it em-
beds the extra bits in the pointers of block i. We are currently
working on a scheme in which e is changed adaptively with the
availability of redundant bits in the stream.

We now proceed to sketch the analysis. Let T[1,n] be the
first n symbols generated by the source and let Ln be the
random variable associated with the length of the longest pre-
fix (phrase) of T[n+1,∞] which has an occurrence in T[1,n]. In
other words, the random variable Ln describes the length of
the phrases of LZ’77. Henceforth, we use L instead of Ln for

1This work was supported in part by NSF Grants CCR-0208709,
DBI-0321756 and NIH grant R01 GM068959-01.

simplicity. We associate the variable Wn to the multiplicity
at position n in the text, that is, Wn =

∑n−L
i=1
1(T[i,i+l−1] =

T[n+1,n+L]). Using the results by Wyner [3] it is easy to prove
the following theorem.

Theorem 1 Let T[1,n] be generated by a Markov source. Then

E[Wn] = O(1), (1)

that is, the average multiplicity is constant when n is large.

One can define Wn in terms of the associated suffix trie
Sn built from the first n suffixes of the text T . In fact, when
inserting the (n + 1)-st suffix of T into Sn the size of the
subtree starting at the branching point of a new insertion is
exactly Wn.
In order to study the variableWn we reduce the problem to

a simpler one that, asymptotically, is equivalent to our prob-
lem. Instead of analyzing a random suffix tree we construct
a random trie built from n independently generated strings
generated by a memoryless source. It is known that such a
trie approximates well the initial suffix trie. (Indeed, if one
builds a suffix tree from n/ log n suffixes separated by log n
symbols, then such a tree is asymptotically equivalent to an
independently built trie.) As a consequence of this, we can
now concentrate our analysis to tries. In such a trie, define
Mn to be the size of the subtree starting at the branching
point of a new insertion. Then, as we shall prove,Mn and Wn
have the same asymptotic distribution. In [2] we establish the
following result concerning Mn.

Theorem 2 Let zk =
2krπi
ln p

for all k ∈ Z, where ln p
ln q
= r
s
for

some relatively prime r, s ∈ Z. Then

E[(Mn)
j ] = Γ(j)

q(p/q)j + p(q/p)j

h
+ δj(log1/p n) +O

(
1

n

)

and

E[uMn ] = − q ln (1−pu) + p ln (1−qu)
h

+δ(log1/p n, u)+O
(
1

n

)

where δj and δ are periodic functions that have small magni-
tude, and Γ is the Euler gamma function. We note that δj
and δ exhibit fluctuation if and only if ln p/ ln q is rational.

References
[1] Lonardi, S., Szpankowski, W., Joint source-channel LZ’77
coding, IEEE Data Compression Conference, 273–282, 2003.

[2] Ward, M. D., Szpankowski, W., Analysis of a randomized
selection algorithm motivated by the LZ’77 scheme, 1st Work-
shop on Analytic Algorithms and Combinatorics, 2004.

[3] Wyner, A. J., The redundancy and distribution of the phrase
lengths of the fixed-database Lempel-Ziv algorithm, IEEE
Trans. Information Theory, 43, 1439–1465, 1997.

ISIT 2004, Chicago, USA, June 27 – July 2, 2004


	footer1: 


