STAT/MA 41600 Practice Problems: December 10, 2014 Solutions by Mark Daniel Ward

1. a. Since X is uniform and Y has the form Y = aX + b for constants a, b, then Y is uniform too. Notice $2(10) + 2 \le Y \le 2(14) + 2$, i.e., $22 \le Y \le 30$. Also $\frac{1}{30-22} = \frac{1}{8}$. So $f_Y(y) = \frac{1}{8}$ for $22 \le Y \le 30$, and $f_Y(y) = 0$ otherwise.

b. Since the density of Y is constant on [22, 30], then $P(Y > 28) = \frac{\text{length of } [28,30]}{\text{length of } [22,30]} = 2/8 = 1/4.$

c. We have P(Y > 28) = P(2X + 2 > 28) = P(2X > 26) = P(X > 13). Since the density of X is constant on [10, 14], then $P(X > 13) = \frac{\text{length of } [13, 14]}{\text{length of } [10, 14]} = 1/4$.

2. a. Since X is uniform and Y has the form Y = aX + b for constants a, b, then Y is uniform too. Notice $(1.07)(4) + 3.99 \le Y \le (1.07)(9) + 3.99$, i.e., $8.27 \le Y \le 13.62$. Also $\frac{1}{13.62 - 8.27} = \frac{1}{5.35}$. So $f_Y(y) = \frac{1}{5.35}$ for $8.27 \le Y \le 13.62$, and $f_Y(y) = 0$ otherwise.

b. Method #1: Since Y is uniform on [8.27, 13.62], the expected value of Y is the midpoint of the interval, i.e., $\mathbb{E}(Y) = \frac{8.27+13.62}{2} = 10.945$.

Method #2: We calculate $\mathbb{E}(Y) = \int_{8.27}^{13.62} y \frac{1}{5.35} dy = \frac{13.62^2 - 8.27^2}{2} \frac{1}{5.35} = 10.945.$

c. We calculate $\mathbb{E}(X) = \int_4^9 (1.07x + 3.99) \frac{1}{5} dx = \frac{1}{5} (1.07x^2/2 + 3.99x)|_{x=4}^9 = 10.945.$

3. a. For $8 \le a \le 35$, we have $P(Y \le a) = P((X - 1)(X + 1) \le a) = P(X^2 - 1 \le a) = P(X^2 \le a + 1) = P(X \le \sqrt{a + 1}) = \frac{\sqrt{a + 1} - 3}{6 - 3}$. Thus, the CDF of Y is

$$F_Y(y) = \begin{cases} 0 & \text{if } y < 8, \\ \frac{\sqrt{y+1}-3}{3} & \text{if } 8 \le y \le 35, \\ 1 & \text{if } 35 < y. \end{cases}$$

b. For $8 \le y \le 35$, we differentiate $F_Y(y)$ with respect to y, and we get $f_Y(y) = \frac{1}{6}(y+1)^{-1/2}$; otherwise, $f_Y(y) = 0$.

c. We use u = y + 1 and du = dy to compute $\mathbb{E}(Y) = \int_8^{35} y \frac{1}{6} (y+1)^{-1/2} dy = \int_9^{36} \frac{1}{6} (u-1)u^{-1/2} du = \int_9^{36} \frac{1}{6} (u^{1/2} - u^{-1/2}) du = \frac{1}{6} (\frac{2}{3}u^{3/2} - 2u^{1/2})|_{u=9}^{36} = \frac{1}{6} (((2/3)(216) - (2)(6)) - ((2/3)(27) - (2)(3))) = 20.$

d. We compute $\mathbb{E}((X-1)(X+1)) = \int_3^6 (x-1)(x+1)(1/3) \, dx = \int_3^6 (1/3)(x^2-1) \, dx = (1/3)(\frac{1}{3}x^3-x)|_{x=3}^6 = (1/3)((72-6)-(9-3)) = 20.$

4. We have $\operatorname{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$. Since X, Y have a joint uniform distribution on a triangle with area (2)(2)/2 = 2, then $f_{X,Y}(x, y) = 1/2$ on the triangle, and $f_{X,Y}(x, y) = 0$

otherwise. So:

$$\mathbb{E}(XY) = \int_0^2 \int_0^{2-x} xy \frac{1}{2} \, dy \, dx = 1/3,$$

and

$$\mathbb{E}(X) = \int_0^2 \int_0^{2-x} x \frac{1}{2} \, dy \, dx = 2/3,$$

and (since everything is symmetric, we don't even need to calculate):

$$\mathbb{E}(Y) = \int_0^2 \int_0^{2-x} y \frac{1}{2} \, dy \, dx = 2/3.$$

So $Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 1/3 - (2/3)(2/3) = -1/9.$

5. Since X_j is Bernoulli with p = 2/19, then $Var(X_j) = (2/19)(17/19) = 34/361$.

Also $\operatorname{Cov}(X_i, X_j) = \mathbb{E}(X_i X_j) - \mathbb{E}(X_i) \mathbb{E}(X_j)$. Also $\mathbb{E}(X_i) = 2/19$ and $\mathbb{E}(X_j) = 2/19$, so we only need $\mathbb{E}(X_i X_j)$. Notice $X_i X_j$ is 0 or 1, i.e., the product $X_i X_j$ is Bernoulli, so $\mathbb{E}(X_i X_j) = P(X_i X_j = 1)$. [We can also see this by $\mathbb{E}(X_i X_j) = 1P(X_i X_j = 1) + 0P(X_i X_j = 0) = P(X_i X_j = 1)$.]

Now we use $P(X_iX_j = 1) = P(X_i = 1 \text{ and } X_j = 1) = P(X_i = 1)P(X_j = 1 | X_i = 1)$. We know $P(X_i = 1) = 2/19$. Once $X_i = 1$ is given, there is a row of 18 open seats where the *j*th couple might sit. The man sits on the end with probability 2/18 and his wife beside him with probability 1/17, or the man does not sit on the end, with probability 16/18 and his wife beside him with probability 2/17, so $P(X_j = 1 | X_i = 1) = (2/18)(1/17) + (16/18)(2/17) = 1/9$. [Alternatively, this can be calculated by observing that there are (18)(17) places that they can sit, but there are 17 adjacent pairs of seats, and they can sit in them 2 ways, so $P(X_j = 1 | X_i = 1) = \frac{(17)(2)}{(18)(17)} = 2/18 = 1/9$.]

So $\mathbb{E}(X_i X_j) = P(X_i X_j = 1) = (2/19)(1/9).$ So $\operatorname{Cov}(X_i, X_j) = \mathbb{E}(X_i X_j) - \mathbb{E}(X_i) \mathbb{E}(X_j) = (2/19)(1/9) - (2/19)(2/19) = 2/3249.$ Finally $\operatorname{Var}(X) = \sum_{j=1}^{10} \operatorname{Var}(X_j) + 2 \sum_{1 \le i < j \le 10} \operatorname{Cov}(X_i, X_j) = (10)(34/361) + (90)(2/3249) = 0/361$

360/361.