STAT/MA 41600 Practice Problems: November 10, 2014 Solutions by Mark Daniel Ward

1. a. We compute $P(X \le 10) = P(\frac{X-4.2}{\sqrt{50.41}} \le \frac{10-4.2}{\sqrt{50.41}}) = P(Z \le 0.82) = 0.7939.$

b. We compute $P(X \le 0) = P(\frac{X-4.2}{\sqrt{50.41}} \le \frac{0-4.2}{\sqrt{50.41}}) = P(Z \le -0.59) = P(0.59 \le Z) = 1 - P(Z \le 0.59) = 1 - 0.7224 = 0.2776.$

c. Combining the work above, we have $P(0 \le X \le 10) = P(X \le 10) - P(X \le 0) = 0.7939 - 0.2776 = 0.5163.$

2. We compute $P(70 \le X) = P(\frac{70-72.5}{6.9} \le \frac{X-72.5}{6.9}) = P(-0.36 \le Z) = P(Z \le 0.36) = 0.6406.$

3. We compute $0.3898 = P(a \le Z \le .54) = P(Z \le .54) - P(Z \le a) = .7054 - P(Z \le a)$. Thus $P(Z \le a) = .7054 - 0.3898 = 0.3156$. [Note, in particular, that now we can see *a* will be negative.] Equivalently, we have $P(-a \le Z) = 0.3156$, so $P(Z \le -a) = 1 - 0.3156 = .6844$. So from the normal chart, we have -a = 0.48, so a = -0.48.

4. a. We compute $P(66 \le X) = P(\frac{66-64}{12.8} \le \frac{X-64}{12.8}) = P(0.16 \le Z) = 1 - P(Z \le 0.16) = 1 - 0.5636 = 0.4364.$

b. Let X_1, \ldots, X_{10} be indicator random variables corresponding to the first, ..., tenth person, so that $X_j = 1$ if the *j*th person has height 66 inches or taller, or $X_j = 0$ otherwise. Then $\mathbb{E}(X_1 + \cdots + X_{10}) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_{10}) = 0.4364 + \cdots + 0.4364 = 4.364.$

5. Method #1: We compute $0.1492 = P(X \le x) = P\left(\frac{X-22}{\sqrt{8}} \le \frac{x-22}{\sqrt{8}}\right) = P\left(Z \le \frac{x-22}{\sqrt{8}}\right)$. Taking complements on both sides yields $1 - 0.1492 = 1 - P\left(Z \le \frac{x-22}{\sqrt{8}}\right) = P\left(\frac{x-22}{\sqrt{8}} \le Z\right)$. Simplifying (and switching directions on the right-hand-side) yields $0.8508 = P\left(Z \le -\frac{x-22}{\sqrt{8}}\right)$. So $-\frac{x-22}{\sqrt{8}} = 1.04$, and thus $x = (\sqrt{8})(-1.04) + 22 = 19.06$.

Method #2: We start with $0.1492 = P(Z \le z)$, which is not on the table, so taking complements gives $1 - 0.1492 = 1 - P(Z \le z) = P(z \le Z)$, so $0.8508 = P(Z \le -z)$. Thus -z = 1.04, so z = -1.04. Now that we have the value of z we need, we can return to the original statement, to get: $0.1492 = P(Z \le -1.04) = P(\mu_X + \sigma_X Z \le \mu_X + \sigma_X(-1.04)) = P(X \le 22 - (\sqrt{8})(1.04)) = P(X \le 19.06)$. So the desired quantity is x = 19.06.