STAT/MA 41600 Practice Problems: October 27, 2014 Solutions by Mark Daniel Ward

1.

a. Method #1: Since we saw $\mathbb{E}(X) = 1$ and $\mathbb{E}(Y) = 1$ in the previous problem set, then $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y) = 1 + 1 = 2$.

Method #2: We have
$$\mathbb{E}(X+Y) = \int_0^3 \int_0^{3-x} (x+y)(\frac{2}{9}) \, dy \, dx = \int_0^3 (xy+\frac{y^2}{2}) \left(\frac{2}{9}\right) \Big|_{y=0}^{3-x} \, dx = \int_0^3 (1-\frac{x^2}{9}) \, dx = (x-\frac{x^2}{9}) \Big|_{x=0}^3 = (3-\frac{3^2}{9}) = 2.$$

b. Method #1: Since we know from the previous problem set that $f_X(x) = \frac{2}{9}(3-x)$ for $0 \le x \le 3$, then we can integrate $\mathbb{E}(X^2) = \int_0^3 x^2(\frac{2}{9})(3-x) \, dx = \int_0^3 (\frac{2}{9})(3x^2-x^3) \, dx = (\frac{2}{9})(x^3-\frac{x^4}{4})\Big|_{x=0}^3 = (\frac{2}{9})(27-\frac{81}{4}) = 3/2$. So $\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 3/2 - 1^2 = 1/2$.

Method #2: We can integrate $\mathbb{E}(X^2) = \int_0^3 \int_0^{3-x} (x^2) (\frac{2}{9}) \, dy \, dx = \int_0^3 (3x^2 - x^3) (\frac{2}{9}) \, dx = \frac{2}{9} (x^3 - \frac{x^4}{4}) \Big|_{x=0}^3 = \frac{2}{9} (27 - \frac{81}{4}) = 3/2.$ So $\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 3/2 - 1^2 = 1/2.$

2.

a. Method #1: Since we know from the previous problem set that $f_X(x) = \frac{1}{6}(4-x)$ for $0 \le x \le 2$, then we can integrate $\mathbb{E}(X^2) = \int_0^2 x^2(\frac{1}{6})(4-x) \, dx = \int_0^2 (\frac{1}{6})(4x^2 - x^3) \, dx = (\frac{1}{6})(\frac{4x^3}{3} - \frac{x^4}{4})\Big|_{x=0}^2 = (\frac{1}{6})(\frac{32}{3} - 4) = 10/9$. We saw $\mathbb{E}(X) = 8/9$ in the previous problem set. So $\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 10/9 - (8/9)^2 = 26/81$.

Method #2: We have $\mathbb{E}(X^2) = \int_0^2 \int_0^{12-3x} (x^2)(\frac{1}{18}) \, dy \, dx = \int_0^2 (\frac{1}{18})(12x^2 - 3x^3) \, dx = (\frac{1}{18})(4x^3 - \frac{3x^4}{4})\Big|_{x=0}^2 = 10/9.$ So $\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 10/9 - (8/9)^2 = 26/81.$

b. Method #1: Since we know from the previous problem set that $f_Y(y) = 1/6$ for $0 \le y \le 6$ and $f_Y(y) = \frac{12-y}{54}$ for $6 \le x \le 12$, then we can integrate $\mathbb{E}(Y^2) = \int_0^6 y^2(\frac{1}{9}) \, dy + \int_6^{12} y^2(\frac{12-y}{54}) \, dy = \frac{6^3}{3}(\frac{1}{9}) + (\frac{12y^3/3 - y^4/4}{54}) \Big|_{y=6}^{12} = 30$. We saw $\mathbb{E}(Y) = 14/3$ in the previous problem set. So $\operatorname{Var}(Y) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2 = 30 - (14/3)^2 = 74/9$.

3. Since X and Y are independent, then $\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$. We already saw in the previous problem set that $f_X(x) = 2e^{-2x}$ for x > 0, and $f_X(x) = 0$ otherwise; also $\mathbb{E}(X) = 1/2$. We already saw $f_Y(x) = 7e^{-7y}$ for y > 0, and $f_Y(y) = 0$ otherwise; also $\mathbb{E}(Y) = 1/7$.

Now we compute $\mathbb{E}(X^2) = \int_0^\infty x^2 2e^{-2x} dx$, and we use $u = x^2$ and $dv = 2e^{-2x} dx$, so du = 2x dx and $v = -e^{-2x}$, to get $\mathbb{E}(X^2) = -x^2 e^{-2x} |_{x=0}^\infty - \int_0^\infty -2x e^{-2x} dx = \int_0^\infty x 2e^{-2x} dx$. We can either integrate a second time, by parts, or just recognize that the integral here is equal to $\mathbb{E}(X)$, which we already calculated in the previous problem set, question #3. So altogether we have $\mathbb{E}(X^2) = \mathbb{E}(X) = 1/2$. Thus $\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 1/2 - (1/2)^2 = 1/4$.

Similarly $\mathbb{E}(Y^2) = \int_0^\infty y^2 7e^{-7y} dy$, and we use $u = y^2$ and $dv = 7e^{-7y} dy$, so du = 2y dyand $v = -e^{-7y}$, to get $\mathbb{E}(Y^2) = -y^2 e^{-7y}|_{y=0}^\infty - \int_0^\infty -2y e^{-7y} dy = \frac{2}{7} \int_0^\infty y \, 7e^{-7y} dy$. We can either integrate a second time, by parts, or just recognize that the integral here is equal to $\mathbb{E}(Y)$, which we already calculated in the previous problem set, #3. So altogether $\mathbb{E}(Y^2) = \frac{2}{7}\mathbb{E}(Y) = (2/7)(1/7) = 2/49$. Thus $\operatorname{Var}(Y) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2 = 2/49 - (1/7)^2 = 1/49$.

4. Method #1: We know $\mathbb{E}(Y) = 1/9$ from the previous problem set, and $f_Y(y) = 9e^{-9y}$ for y > 0, and $f_Y(y) = 0$ otherwise. Also $\mathbb{E}(Y^2) = \int_0^\infty (y^2)(9e^{-9y}) \, dy$, and we use $u = y^2$ and $dv = 9e^{-9y} \, dy$, so $du = 2y \, dy$ and $v = -e^{-9y}$, to get $\mathbb{E}(Y^2) = -y^2 e^{-9y}|_{y=0}^\infty - \int_0^\infty -2y e^{-9y} \, dy = \frac{2}{9} \int_0^\infty y \, 9e^{-9y} \, dy$. We can either integrate a second time, by parts, or just recognize that the integral here is equal to $\mathbb{E}(Y)$, which is 1/9, as in the previous problem set, #4. So altogether $\mathbb{E}(Y^2) = \frac{2}{9}\mathbb{E}(Y) = (2/9)(1/9) = 2/81$. Thus $\operatorname{Var}(Y) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2 = 2/81 - (1/9)^2 = 1/81$.

Method #2: We compute $\mathbb{E}(Y^2) = \int_0^\infty \int_y^\infty (y^2) (18e^{-2x-7y}) dx dy = \int_0^\infty (y^2) (-9e^{-2x-7y}) \Big|_{x=y}^\infty dy = \int_0^\infty (y^2) (9e^{-9y}) dy$, and then everything else proceeds as in Method #1 above, i.e., we get $\mathbb{E}(Y^2) = 2/81$ in the same way from Method #1, starting on the second line. We also have $\mathbb{E}(Y) = 1/9$, so $\operatorname{Var}(Y) = 2/81 - (1/9)^2 = 1/81$.

5. We have $\mathbb{E}(X^2 + Y^3) = \mathbb{E}(X^2) + \mathbb{E}(Y^3)$.

As in the previous problem set, $f_X(x) = \frac{2}{9}(3-x)$ for $0 \le x \le 3$ and $f_X(x) = 0$ otherwise. So $\mathbb{E}(X^2) = \int_0^3 (x^2)(\frac{2}{9})(3-x) \, dx = \int_0^3 \frac{2}{9}(3x^2-x^3) \, dx = \frac{2}{9}(x^3-x^4/4)\Big|_{x=0}^3 = 3/2.$

As in the previous problem set, $f_Y(y) = \frac{1}{2}(2-y)$ for $0 \le y \le 2$ and $f_Y(y) = 0$ otherwise. So $\mathbb{E}(Y^3) = \int_0^2 (y^3)(\frac{1}{2})(2-y) \, dy = \int_0^2 \frac{1}{2}(2y^3 - y^4) \, dy = \frac{1}{2}(2y^4/4 - y^5/5)\Big|_{y=0}^2 = 4/5.$

Thus $\mathbb{E}(X^2 + Y^3) = \mathbb{E}(X^2) + \mathbb{E}(Y^3) = 3/2 + 4/5 = 23/10 = 2.3.$