
Expected value of a continuous uniform random variable X: We know X has constant
density fX(x) = 1/(b− a) on some interval [a, b]. So

E(X) =

∫ b

a

(x)
1

b− a
dx =

1

b− a

x2

2
|bx=a =

1

b− a

b2 − a2

2
=

1

b− a

(b− a)(b + a)

2
=

a + b

2
.

This makes intuitive sense, because the density is constant (evenly spread) across the finite
length interval [a, b], so we might guess that the expected value would be directly in the
middle of this interval, and indeed it is.

What about E(X2)?
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Now we can find the variance of X:
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(Here we just used 12 as a common denominator and simplified. Please check.)
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