
Earlier example: Recall the situation where there are 4 births from 4 mothers (e.g., no
twins), and let X denote the number of girls born among the 4 children. Notice that X is a
Binomial(4, 1/2) random variable, i.e., n = 4 and p = 1/2.

We can see the use of the Binomial coefficients in this light. Let’s recompute the mass
of X:
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)
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pX(2) = P (X = 2) =
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)
(1/2)2(1/2)2 = (6)(1/16) = 3/8 because
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pX(3) = P (X = 3) =
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)
(1/2)3(1/2)1 = (4)(1/16) = 1/4 because
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)
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pX(4) = P (X = 4) =
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)
(1/2)4(1/2)0 = (1)(1/16) = 1/16 because
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)
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We note a few things: The mass adds up to 1, as it should 1/16+1/4+3/8+1/4+1/16 = 1.
Also note that
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)
=
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)
. Why?
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)
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=
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)
. Intuitively this

makes sense, because if we have n items, and we choose j of them, we have avoided exactly
n− j items. So we could just switch your view, and (instead) decided which items to avoid
(instead of which items to choose), and this is
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)
. For instance,
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=

(
4
3

)
.
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