STAT/MA 41600 In-Class Problem Set #39 part 2: November 16, 2018 Solutions by Mark Daniel Ward

Problem Set 39 part 2 Answers

1. We have $\mathbb{E}(XY) = \int_0^\infty \int_x^\infty (xy)(1/750)e^{-(x/150+y/30)} dy dx$.

For the inner integral (only), integration by parts with u = y and $dv = (x)(1/750)e^{-(x/150+y/30)}$, and thus du = dy and $v = -(x)(1/25)e^{-(x/150+y/30)}$ gives us $\int_x^{\infty} (xy)(1/750)e^{-(x/150+y/30)} dy = -(xy)(1/25)e^{-(x/150+y/30)}|_{y=x}^{\infty} - \int_x^{\infty} -(x)(1/25)e^{-(x/150+y/30)} dy = (x^2)(1/25)e^{-x/25} + (x)(6/5)e^{-x/25}$. So altogether we have $\mathbb{E}(XY) = \int_0^{\infty} ((x^2)(1/25)e^{-x/25} + (x)(6/5)e^{-x/25}) dx$. The first term

is equal to $(2)(25^2)$, since it is equal to $\mathbb{E}(X^2)$, where X is an exponential random variable with $\lambda = 1/25$. The second term can be rewritten as $\int_0^\infty (x) (6/5) e^{-x/25} dx = 30 \int_0^\infty (x) (1/25) e^{-x/25} dx$, which equals (30)(25), by again using our knowledge of the mean of an exponential random variable with $\lambda = 1/25$. So altogether we have $\mathbb{E}(XY) = (2)(25^2) + (30)(25) = 2000$.

2a. For the inner integral (only), we get $\int_x^{\infty} (x)(1/750)e^{-(x/150+y/30)} dy = -(x)(1/25)e^{-(x/150+y/30)}|_{y=x}^{\infty} = (x)(1/25)e^{-x/25}.$

Now we have $\mathbb{E}(X) = \int_0^\infty (x^2)(1/25)e^{-x/25} dx = 25$, using our knowledge about the mean of exponential random variables.

2b. We have $\mathbb{E}(Y) = \int_0^\infty \int_x^\infty (y) (1/750) e^{-(x/150+y/30)} dy dx$.

For the inner integral (only), integration by parts with u = y and $dv = (1/750)e^{-(x/150+y/30)}$, and thus du = dy and $v = -(1/25)e^{-(x/150+y/30)}$ gives us $\int_x^{\infty} (y)(1/750)e^{-(x/150+y/30)} dy = -(y)(1/25)e^{-(x/150+y/30)}|_{y=x}^{\infty} - \int_x^{\infty} -(1/25)e^{-(x/150+y/30)} dy = (x)(1/25)e^{-x/25} + (6/5)e^{-x/25}$.

So we get $\mathbb{E}(Y) = \int_0^\infty (x)(1/25)e^{-x/25} + (6/5)e^{-x/25}) dx$. The first term is 25 (by using our knowledge about the mean of exponential random variables). The second term is $\int_0^\infty (6/5)e^{-x/25} dx =$ $30 \int_0^\infty (1/25) e^{-x/25} dx = 30$. So altogether we have $\mathbb{E}(Y) = 25 + 30 = 55$.

3. As before, we compute $\text{Cov}(X_1, X_2) = \mathbb{E}(X_1 X_2) - \mathbb{E}(X_1)\mathbb{E}(X_2) = (12/52)(11/51) - (3/13)^2 =$ -10/2873. We also have $\operatorname{Var}(X_1) = \operatorname{Var}(X_2) = \mathbb{E}(X_1^2) - (\mathbb{E}(X_1))^2 = \mathbb{E}(X_1) - (\mathbb{E}(X_1))^2 = 3/13 - (3/13)^2 = 30/169$. So altogether we have $\rho(X_1, X_2) = \operatorname{Cov}(X_1, X_2)/\sqrt{\operatorname{Var}(X_1)\operatorname{Var}(X_2)} = 3/13 - (3/13)^2 = 30/169$. $(-10/2873)/\sqrt{(30/169)(30/169)} = -1/51.$

4. As before, we compute $Cov(X_1, X_2) = \mathbb{E}(X_1X_2) - \mathbb{E}(X_1)\mathbb{E}(X_2) = \frac{12}{90} - \frac{1}{3} = \frac{1}{45}$. We also have $\operatorname{Var}(X_1) = \operatorname{Var}(X_2) = \mathbb{E}(X_1^2) - (\mathbb{E}(X_1))^2 = \mathbb{E}(X_1) - (\mathbb{E}(X_1))^2 = 1/3 - (1/3)^2 = 2/9$. So altogether we have $\rho(X_1, X_2) = \text{Cov}(X_1, X_2) / \sqrt{\text{Var}(X_1) \text{Var}(X_2)} = (1/45) / \sqrt{(2/9)(2/9)} = 1/10.$