

Name	
Purdue student ID (10 digits) _	

- 1. The testing booklet contains 5 questions, but students only need to answer 4 of the questions. The 4 questions chosen by the student will all be weighted evenly (i.e., each question is worth 1/4 of the midterm exam grade).
- 2. Permitted Texas Instruments calculators:

BA-35

BA II Plus*

BA II Plus Professional Edition*

TI-30XS MultiView*

TI-30Xa

TI-30XIIS*

TI-30XIIB*

TI-30XB MultiView*

- 3. Circle your final answer in your booklet; otherwise, no credit may be given.
- 4. There is no penalty for guessing or partial work.
- 5. Show all your work in the exam booklet. If the majority of questions are answered correctly, but insufficient work is given, the exam could be considered for academic misconduct.
- 6. Extra sheets of paper are available from the proctor.

^{*}The memory of the calculator should be cleared at the start of the exam.

- 1. Consider a continuous random variable Y that has the probability density function $f_Y(y) = 7e^{-7y}$ for y > 0, and $f_Y(y) = 0$ otherwise.
- 1a. For the random variable Y in question 1, calculate P(|Y 1/4| < 1/8).

1b. For the random variable Y in question 1, what is the median? In other words, for which value of "a" do we have $P(Y \le a) = 1/2$?

2. Consider a Beta random variable X with parameters $\alpha=2$ and $\beta=2$. Find P(1/4 < X < 3/4).

- **3.** Suppose that X and Y have joint probability density function $f_{X,Y}(x,y) = 21e^{-3x-4y}$ for 0 < y < x, and $f_{X,Y}(x,y) = 0$ otherwise.
- **3a.** Find the conditional probability density function of X, given Y=2. In other words, find $f_{X|Y}(x\mid 2)$.

3b. Find the conditional probability that $X > \frac{5}{2}$, given that Y = 2. In other words, find $P(X > \frac{5}{2} \mid Y = 2)$.

- **4.** Define $f(x) = x^3/324$ for 0 < x < 6 and f(x) = 0 otherwise. Suppose X_1, \ldots, X_{100} are independent, continuous random variables that each have probability density function f(x).
- **4a.** Find $\mathbb{E}(X_j)$.

4b. Find $Var(X_j)$.

4c. Find a good estimate for $P(X_1 + \cdots + X_{100} < 475)$.

- 5. Consider 10 fish in a bowl: 8 of them are red, and 1 is green, and 1 is blue. Select the fish one at a time, without replacement, until the bowl is empty.
- Let X = 1 if all of the red fish are selected, before the green fish is selected; and X = 0otherwise.
- Let Y = 1 if all of the red fish are selected, before the blue fish is selected; and Y = 0otherwise.

Find the covariance of X and Y.