$\frac{\text{STAT}/\text{MA 41600}}{\text{In-Class Problem Set #43: December 4, 2017}}$

1. Suppose that X is an Exponential random variable with λ .

1a. Find the moment generating function $M_X(t)$ of X.

1b. Compute $M'_X(0)$. Hint: You should get $1/\lambda$ for your answer, since $M'_X(0) = \mathbb{E}(X)$.

1c. Compute $M''_X(0)$. Hint: You should get $2/\lambda^2$ for your answer, since $M''_X(0) = \mathbb{E}(X^2)$.

(We learned these facts in 1b and 1c on October 27, 2017, in the notes for Problem Set 32.)

2. Same setup as in 1.

2a. Compute $\mathbb{E}(X^3) = M_X''(0)$. (This would previously have taken 3 integrations by parts!) **2b.** Compute $\mathbb{E}(X^4) = M_X'''(0)$. (This would previously have taken 4 integrations by parts!) **2c.** Can you find a general formula for $\mathbb{E}(X^n) = M_X^{(n)}(0)$?

3. Suppose that X is a Chi-squared random variable with parameter k. Then X has moment generating function $(1-2t)^{-k/2}$. (Technical point: this MGF is valid for t < 1/2.) **3a.** Find $\mathbb{E}(X)$.

3b. Find $\mathbb{E}(X^2)$.

3c. Use your answers above to find Var(X).

4. Suppose random variable X has probability mass function $P(X = x) = (125/156)(1/5)^x$, for integers $0 \le x \le 3$.

a. Verify that this is a valid probability mass function.

b. Manually compute the expected value of X.

c. Find the moment generating function $M_X(t)$ of X. (If you think for a moment, it is possible to write $M_X(t)$ without using any summation signs or addition symbols.)

d. Compute $M'_X(0)$. Hint: Your answer should agree with your answer for 4**b**.