STAT/MA 41600 In-Class Problem Set #41: November 29, 2017 Solutions by Mark Daniel Ward

Problem Set 41 Answers

1a. Let X be the time until the next message appears. Then $P(X \ge 40) \le 26/40 = 13/20$, by the Markov Inequality.

1b. We compute $P(20 \le X \le 32) = P(|X - 26| \le 6) = P(|X - \mu_X| \le (3/2)(\sigma_X)) \ge 1 - 1/(3/2)^2 = 1 - 4/9 = 5/9$, where the inequality holds by Chebyshev's Inequality.

2. Let X be the number of candies. Chebyshev's Inequality gives $P(515 \le X \le 575) = P(|X - 545| \le 30) = P(|X - \mu_X| \le (3)(\sigma_X)) \ge 1 - 1/3^2 = 8/9.$

3. We compute:

$$P(X \le Y) = \sum_{x=1}^{\infty} \sum_{y=x}^{\infty} (2/3)^{x-1} (1/3) (4/5)^{y-1} (1/5)$$

= $\sum_{x=1}^{\infty} (2/3)^{x-1} (1/3) (1/5) \sum_{y=x}^{\infty} (4/5)^{y-1}$
= $\sum_{x=1}^{\infty} (2/3)^{x-1} (1/3) (1/5) (4/5)^{x-1} / (1-4/5)$
= $\sum_{x=1}^{\infty} (8/15)^{x-1} (1/3)$
= $(1/3) / (1-8/15)$
= $5/7$

4. We compute $P(X \le Y) = \int_0^\infty \int_x^\infty 120e^{-10x-12y} dy dx = \int_0^\infty -10e^{-10x-12y} \Big|_{y=x}^\infty dx = \int_0^\infty 10e^{-22x} dx = -(10/22)e^{-22x} \Big|_{x=0}^\infty = 10/22 = 5/11.$