STAT/MA 41600 In-Class Problem Set #31: October 25, 2017 Solutions by Mark Daniel Ward

Problem Set 31 Answers

1. Using the ratio of areas only (since the joint probability density function is constant), we can compute P(X > 0) = 8/12 = 2/3.

Alternatively, by integrating, we get $P(X > 0) = \int_0^2 \int_0^{-4y+8} 1/12 \, dx \, dy = \int_0^2 (1/12)(-4y+8) \, dy = (1/12)(-2y^2+8y)|_{y=0}^2 = (1/12)(-8+16) = 8/12 = 2/3.$

2a. We have $f_X(x) = \frac{d}{dx}F_X(x) = 1/15$ for 5 < x < 20, and $f_X(x) = 0$ otherwise. So the expected value is $\mathbb{E}(X) = \int_5^{20} (x)(1/15) \, dx = (x^2/2)(1/15)|_{x=5}^{20} = (200 - 25/2)(1/15) = (375/2)(1/15) = 25/2.$

2b. We compute $\mathbb{E}(X^2) = \int_5^{20} (x^2)(1/15) dx = (x^3/3)(1/15)|_{x=5}^{20} = (8000/3 - 125/3)(1/15) = (2625)(1/15) = 175$. So we conclude $\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 175 - (25/2)^2 = 75/4$.

3. If $-3 \le a \le 3$, we have $P(X \le a) = P(U \le a, V \le a, W \le a) = P(U \le a)P(V \le a)P(W \le a) = ((a+3)/6)^3$. So we have $F_X(x) = ((x+3)/6)^3$ for $-3 \le x \le 3$. Therefore, the probability density function of X is $f_X(x) = \frac{d}{dx}F_X(x) = 3((x+3)/6)^2(1/6) = ((x+3)/6)^2/2$ for $-3 \le x \le 3$, and $f_X(x) = 0$ otherwise.

4. For $0 \le a \le 3$, we have $F_Z(a) = P(Z \le a) = P(X + Y \le a) = (a^2/2)/9$. For $3 \le a \le 6$, we have $1 - F_Z(a) = 1 - P(Z \le a) = P(Z > a) = P(X + Y > a) = ((6 - a)^2/2)/9$. Thus, we have $F_Z(a) = 1 - ((6 - a)^2/2)/9$.

So we conclude that:

For $0 \le z \le 3$, we have $f_Z(z) = \frac{d}{dz}F_Z(z) = \frac{d}{dz}(z^2/2)/9 = z/9$. For $3 \le z \le 6$, we have $f_Z(z) = \frac{d}{dz}F_Z(z) = \frac{d}{dz}(1 - ((6 - z)^2/2)/9) = (6 - z)/9$. Otherwise, we have $f_Z(z) = 0$.