STAT/MA 41600 In-Class Problem Set #26: October 16, 2017 Solutions by Mark Daniel Ward

Problem Set 26 Answers

1a. When y < x, then x - y is positive, and thus $f_{X,Y}(x,y)$ is positive too. When $y \ge x$, then $f_{X,Y}(x,y) = 0$. So $f_{X,Y}(x,y)$ is always nonnegative. We also check that $\int_0^2 \int_0^x (3/4)(x-1) dx dx$ $y) dy dx = \int_0^2 (3/4)(xy - y^2/2)|_{y=0}^x dx = \int_0^2 (3/4)(x^2/2) dx = (3/4)(x^3/6)|_{x=0}^2 = (3/4)(8/6) = 1.$ **1b.** For 0 < x < 2, the probability density function of X is $f_X(x) = \int_0^x (3/4)(x - y) dy = 1$ $(3/4)(xy - y^2/2)|_{y=0}^x = (3/4)(x^2/2) = 3x^2/8$, and $f_X(x) = 0$ otherwise.

1c. For 0 < y < 2, the probability density function of Y is $f_Y(y) = \int_y^2 (3/4)(x-y) dx = (3/4)(x^2/2 - yx)|_{x=y}^2 = (3/4)((2-2y) - (y^2/2 - y^2)) = (3/4)(2 - 2y + y^2/2)$, and $f_Y(y) = 0$ otherwise.

2a. The random variables X and Y are not independent, because we cannot factor $f_{X,Y}(x,y)$

into a function of x times a function of y. **2b.** We compute $P(X+Y \le 1) = \int_0^{1/2} \int_y^{1-y} (3/4)(x-y) dx dy = \int_0^{1/2} (3/4)(x^2/2-yx)|_{x=y}^{1-y} dy = \int_0^{1/2} (3/4)(x^2/2-yx)|_{x=y}^{1-y} dy$ $\int_{0}^{1/2} (3/4)(((1-y)^2/2 - y(1-y)) - (y^2/2 - y^2)) \, dy = \int_{0}^{1/2} (3/4)(1/2 - 2y + 2y^2) \, dy = (3/4)(y/2 - y^2 + 2y^3/3)|_{y=0}^{1/2} = (3/4)(1/4 - 1/4 + 1/12) = 1/16.$

3. We have $P(X > 2Y) = \int_0^\infty \int_{2y}^\infty (3e^{-3x})(8e^{-8y}) dx dy = \int_0^\infty (-e^{-3x})(8e^{-8y})|_{x=2y}^\infty dy = \int_0^\infty (e^{-6y})(8e^{-8y}) dy = \int_0^\infty 8e^{-14y} dy = -(8/14)e^{-14y}|_{y=0}^\infty = 4/7.$

4a. The joint probability density function is $f_{X,Y}(x,y) = 1/(9\pi)$ for points (x,y) in the circle with center at the origin and radius 3, and $f_{X,Y}(x,y) = 0$ otherwise.

4b. The probability that $X^2 + Y^2$ is less than 4 is $4\pi/(9\pi)$, so the probability that $X^2 + Y^2$ is larger than 4 is $1 - 4\pi/(9\pi) = 5/9$.