STAT/MA 41600 In-Class Problem Set #26: October 16, 2017

- 1. Suppose that X and Y have joint probability density function $f_{X,Y}(x,y) = (3/4)(x-y)$ for 0 < y < x < 2, and $f_{X,Y}(x,y) = 0$ otherwise.
- **1a.** Verify that $f_{X,Y}(x,y)$ is a valid joint probability density function, i.e., verify that it is nonnegative and that the integral over all x's and y's is 1.
- **1b.** Find the probability density function of X.
- **1c.** Find the probability density function of Y.
- **2a.** For the setup in question 1, are X and Y independent? Why or why not?
- **2b.** For the setup in question 1, find $P(X + Y \le 1)$. (Hint: Draw the region of integration carefully, before setting up the double-integral.)
- **3.** Suppose that X and Y are independent, continuous random variables with $f_X(x) = 3e^{-3x}$ for x > 0, and $f_X(x) = 0$ otherwise, and with $f_Y(y) = 8e^{-8y}$ for y > 0, and $f_Y(y) = 0$ otherwise. Find P(X > 2Y).
- **4a.** Suppose that X and Y have constant joint probability density function on the circle with center at the origin and radius 3. What is this joint probability density function?
- **4b.** What is the probability that $X^2 + Y^2$ is larger than 4?