STAT/MA 41600

In-Class Problem Set #25: October 13, 2017

1. Consider a pair of continuous random variables X and Y that have the joint probability density function

 $f_{X,Y}(x,y) = e^{-x-y}$, for positive x and y,

and $f_{X,Y}(x,y) = 0$ otherwise. Find the probability that Y is larger than 2X+1, i.e., calculate P(Y > 2X + 1).

2a. For the setup in question 1, find $P(\max(X, Y) \le 1)$.

2b. For the setup in question 1, find $P(\max(X, Y) \leq 2)$.

2c. For the setup in question 1, if a > 0, find $P(\max(X, Y) \le a)$.

2d. Define a new random variable $Z = \max(X, Y)$. In part c, you essentially calculated the CDF for Z. What is the probability density function for Z?

3. Suppose that the probability density function for X is $f_X(x) = x/9$ for $0 \le x \le 3$, and $f_X(x) = 2/3 - x/9$ for $3 \le x \le 6$, and $f_X(x) = 0$ otherwise.

3a. Calculate
$$P(|X - 3| < 1/2)$$

3b. Calculate P(|X - 3| > 2).

4a. What is the probability density function for the random variable X defined in question 1? **4b.** What is the cumulative distribution function for the random variable X defined in question 1?

4c. What is the cumulative distribution function for the random variable X defined in question 3? (You will need to define this in pieces, since the probability density function is defined in pieces.)