$\frac{\text{STAT/MA 41600}}{\text{In-Class Problem Set #44: December 7, 2016}}$

1. Let U be a continuous random variable that is uniformly distributed on the interval (0,3). Let $X = -\ln(U) + \ln(3) = -\ln(U/3)$.

1a. Find P(X > 5).

1b. If a > 0, find P(X > a).

1c. What kind of distribution does X have? What is/are the parameter(s)?

2. Let X denote the waiting time, in minutes, until the next message arrives on Facebook. Suppose that X is an exponential random variable with $\mathbb{E}(X) = 0.25$. Now define $Y = X^2$. **2a.** What is the probability density function of Y?

2b. What is $\mathbb{E}(Y)$? (You can use *u*-sub, with $u = \sqrt{y}$, and then integration by parts twice.) **2c.** Use what you know about $\mathbb{E}(X)$ and $\operatorname{Var}(X)$ to find $\mathbb{E}(X^2)$. Does it agree with $\mathbb{E}(Y)$?

3. If U is a continuous random variable that is uniformly distributed on the interval (0, 2), define $X := U^3$.

3a. Find the probability density function of X.

3b. Use your solution to 3a to find $\mathbb{E}(X)$.

3c. Use the density of U to find $\mathbb{E}(U^3)$ directly. Make sure your answers to 3b and 3c agree.

4. Suppose that the joint distribution of X and Y is uniform (i.e., the joint density is constant) in the quadrilateral shaped region of the (x, y)-plane with vertices at (0, 0), (2, 0), (2, 2), and (0, 4).

4a. Find $\mathbb{E}(X)$.

4b. Find $\mathbb{E}(Y)$.

4c. Find $\mathbb{E}(XY)$.

4d. Use your solutions to parts 4a, 4b, 4c to find the covariance of X and Y.