STAT/MA 41600

In-Class Problem Set #33: November 2, 2016

1. Revisit the following three questions from problem set 32 part 2 (from Monday):

1a. In question 1a, we considered the time X until the full moon appears, and the time Y until the next wolf howls. Is X+Y a Gamma random variable? If so, what are the parameters of X + Y? If not, then why not?

1b. In question 3, we considered the (respective) times V and W until we saw the next vampire and werewolf. Is V + W a Gamma random variable? If so, what are the parameters of V + W? If not, then why not?

1c. In question 4c, we considered the lifetimes of n pumpkins, which we will call X_1, \ldots, X_n . Is $X_1 + \cdots + X_n$ a Gamma random variable? If so, what are the parameters of $X_1 + \cdots + X_n$? If not, then why not?

2. Suppose that the time X (in minutes) until the next set of commercials starts is an exponential random variable with expected value 2. Suppose that the length Y (in minutes) of the commercials themselves is an exponential random variable with expected value 1.5. Assume X and Y are independent.

2a. Is X + Y is a Gamma random variable? If so, what are the parameters of X + Y? If not, then why not?

2b. Find the standard deviation of X + Y.

3. Suppose that X and Y have joint probability density function $f_{X,Y}(x,y) = 16e^{-4x-4y}$ for x > 0 and y > 0, and $f_{X,Y}(x,y) = 0$ otherwise. Calculate $P(X + Y \le 1)$.

4. In the Problem Set #33 from 2014, question #6, we studied an exponential random variable X with $\mathbb{E}(X) = 1/3$, and we learned that the distribution of $Y = \lfloor X \rfloor$ is a "Geometric number of losses", i.e., Y is a discrete random variable that has probability mass function $P(Y = y) = q^y p$ for $y \ge 0$, with $p = 1 - e^{-3} = 0.9502$ and $q = e^{-3} = 0.0498$.

What is $\mathbb{E}(Y)$? Hint: Since $Y = \lfloor X \rfloor$, then $X \leq Y < X + 1$, so $\mathbb{E}(X - 1) \leq \mathbb{E}(Y) \leq \mathbb{E}(X)$, i.e., in this case, $-2/3 \leq \mathbb{E}(Y) < 1/3$. So your answer should be between -2/3 and 1/3.