STAT/MA 41600 In-Class Problem Set #27: October 19, 2016

1. Suppose that X and Y have joint probability density function $f_{X,Y}(x,y) = 15e^{-5x-3y}$ for x > 0 and y > 0, and $f_{X,Y}(x,y) = 0$ otherwise.

1a. Is it true in this setup that P(Y > 3/10 | X > 1/10) = P(Y > 3/10)? Why or why not? **1b.** Calculate the value of P(Y > 3/10 | X > 1/10).

2. Suppose that X and Y have joint density $f_{X,Y}(x,y) = 24e^{-5x-3y}$ for y > x > 0, and $f_{X,Y}(x,y) = 0$ otherwise.

2a. Calculate $P(Y > 3/10 \mid X > 1/10)$. You may use the fact that $P(X > 1/10) = e^{-8/10}$, as calculated in question 3 of the previous problem set.

2b. Find $f_X(x)$, and use this to find $f_{Y|X}(y \mid x)$.

2c. Calculate $P(Y > 3/10 \mid X = 1/10)$.

3. Consider a pair of random variables X, Y with constant joint density on the triangle with vertices at (0,0), (8,0), and (0,4).

3a. Find $f_{Y|X}(y \mid 2)$.

3b. Find P(Y > 1 | X = 2).

3c. Find P(Y > 1 | X > 2).

4. Suppose that X and Y have joint probability density function

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{12}(4-xy) & \text{if } 0 < x < 2 \text{ and } 0 < y < 2\\ 0 & \text{otherwise} \end{cases}$$

4a. Find $f_{Y|X}(y \mid x)$. You are welcome to use $f_X(x)$, as calculated in question 4b of the previous problem set.

4b. Calculate P(Y < 4/3 | X = 2/3). **4c.** Calculate P(Y < 4/3 | X < 2/3).