## STAT/MA 41600 In-Class Problem Set #12: September 19, 2016

1. Consider a collection of 6 bears. There is a pair of red bears consisting of one father bear and one mother bear. There is a similar green bear pair, and a similar blue bear pair. A bear pair is happy if it is sitting together. Let X denote the number of happy bear pairs.

**1a.** Find  $\mathbb{E}(X^2)$  using the probability mass function of X, as given in Problem Set #7, question 4.

**1b.** Find  $\mathbb{E}(X^2)$  in a different way, namely, using the fact that  $X = X_1 + X_2 + X_3$ , where the  $X_j$ 's are **dependent** indicators. Expand  $(X_1 + X_2 + X_3)^2$  into 9 terms, where 6 of them will behave one way, and the other 3 will behave another way.

**1c.** Find  $\operatorname{Var}(X)$  using your answer to  $\mathbb{E}(X^2)$  and your answer to  $\mathbb{E}(X)$  from last week.

**2.** Pick two cards simultaneously at random from a well-shuffled deck of 52 cards. There are 36 cards which have numbers on them (cards 2 through 10, in each of the 4 suits), and there are 16 cards without numbers on them (A, J, Q, K, in each of the 4 suits). Let X be the number of cards that you get with numbers on them.

**2a.** Find  $\mathbb{E}(X^2)$  using the probability mass function of X, as given in Problem Set #7, question 3.

**2b.** Find  $\mathbb{E}(X^2)$  in a different way, namely, using the fact that  $X = X_1 + X_2$ , where the  $X_j$ 's are **dependent** indicators. Expand  $(X_1 + X_2)^2$  into 4 terms, where 2 of them will behave one way, and the other 2 will behave another way. Or, if you prefer, write  $X = X_1 + \cdots + X_{36}$ , where the  $X_j$ 's are **dependent** indicators. Expand  $(X_1 + \cdots + X_3)^2$  into  $36^2 = 1296$  terms, where 1296 - 36 = 1260 of them will behave one way, and the other 36 will behave another way.

**2c.** Find  $\operatorname{Var}(X)$  using your answer to  $\mathbb{E}(X^2)$  and your answer to  $\mathbb{E}(X)$  from last week.

**3.** Reconsider question **2**, but this time pick 3 cards. Find the variance of X.

4. Suppose Alice rolls a 6-sided die, and Bob rolls a 4-sided die. Let X denote the maximum value on the two dice.

**4a.** Find  $\mathbb{E}(X^2)$  using the probability mass function of X, as given in Problem Set #10, question 4a.

**4b.** Find  $\mathbb{E}(X^2)$  in a different way, namely, using the fact that  $X = X_1 + \cdots + X_6$ , where the  $X_j$ 's are **dependent** indicators. Expand  $(X_1 + \cdots + X_6)^2$  into 36 terms, which have various types of behaviors.

Hint: Using the formulation from Problem Set 11, on this problem we used  $X_j = 1$  if the maximum is bigger than or equal to j, and  $X_j = 0$  otherwise. So on this problem,  $X_iX_j = X_j$  if j > i. For example,  $X_3X_5 = X_5$  since  $X_3X_5 = 1$  if the maximum is at least 5, and  $X_3X_5 = 0$  otherwise. This problem might seem a little tricky at first, but just think about it, and discuss it, and make sure that your solution agrees with **4a**.

**4c.** Find  $\operatorname{Var}(X)$  using your answer to  $\mathbb{E}(X^2)$  and your answer to  $\mathbb{E}(X)$  from last week.