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Solutions by Mark Daniel Ward

Problem Set 11 Answers

1. Let X1, X2, X3 indicate (respectively) whether the red, green, and blue pairs are sitting
together. For instance, let X2 = 1 if the green pair sits together, and X2 = 0 otherwise.
Then Xj = 1 with probability 2/5, so E(Xj) = 2/5 for each j. So we conclude that
E(X) = E(X1 +X2 +X3) = E(X1) + E(X2) + E(X3) = 2/5 + 2/5 + 2/5 = 6/5.

Another possibility is to number the six chairs, and to let Xj indicate if the jth chair
and the chair to its right-hand-side contain a matching color of bear. Then Xj = 1 with
probability 1/5, so E(Xj) = 1/5 for each j. So we conclude that E(X) = E(X1 + · · ·+X6) =
E(X1) + · · ·+ E(X6) = 1/5 + · · ·+ 1/5 = 6/5.

2a. Let X1, X2 indicate (respectively) whether the cards drawn in your left and right hand
has a number on it. For instance, letX2 = 1 if the card in your right hand has a number on it,
and X2 = 0 otherwise. Then Xj = 1 with probability 36/52, so E(Xj) = 36/52 for each j. So
we conclude that E(X) = E(X1 +X2) = E(X1) +E(X2) = 36/52 + 36/52 = 72/52 = 18/13.

Another possibility is to consecutively number the 36 cards that have values 2 through 10
in each of the 4 suits, and to let Xj indicate if the jth card is chosen. Then Xj = 1 with prob-
ability 2/52, so E(Xj) = 2/52 for each j. So we conclude that E(X) = E(X1 + · · ·+X36) =
E(X1) + · · ·+ E(X36) = 2/52 + · · ·+ 2/52 = (36)(2/52) = 72/52 = 18/13.
2b. Let X1, X2, X3 indicate (respectively) whether the cards drawn in your left hand, right
hand, or third hand (you need three hands for this method—i.e., you need a friend to help you
with this) has a number on it. For instance, let X2 = 1 if the card in your right hand has a
number on it, and X2 = 0 otherwise. Then Xj = 1 with probability 36/52, so E(Xj) = 36/52
for each j. So we conclude that E(X) = E(X1 +X2 +X3) = E(X1) + E(X2) + E(X3) =
36/52 + 36/52 + 36/52 = 108/52 = 27/13.

Another possibility is to consecutively number the 36 cards that have values 2 through 10
in each of the 4 suits, and to let Xj indicate if the jth card is chosen. Then Xj = 1 with prob-
ability 3/52, so E(Xj) = 3/52 for each j. So we conclude that E(X) = E(X1 + · · ·+X36) =
E(X1) + · · ·+ E(X36) = 3/52 + · · ·+ 3/52 = (36)(3/52) = 108/52 = 27/13.

3a. Let Xj indicate whether j or more draws are needed. For instance, let X8 = 1 if 8 or
more draws are needed, and X8 = 0 otherwise. Then Xj = 1 with probability (4/5)j−1, so
E(Xj) = (4/5)j−1 for each j. So we conclude that E(X) =

∑∞
j=1(4/5)

j−1 = 1/(1− 4/5) = 5.
3b. Let Xj indicate whether j or more draws are needed. For instance, let X2 = 1 if 2
or more draws are needed, and X2 = 0 otherwise. Then X1 = 1 with probability 1, and
X2 = 1 with probability 4/5, andX3 = 1 with probability (4/5)(3/4) = 3/5, andX4 = 1 with
probability (4/5)(3/4)(2/3) = 2/5, and X5 = 1 with probability (4/5)(3/4)(2/3)(1/2) = 1/5,
so E(X1) = 1 and E(X2) = 4/5 and E(X3) = 3/5 and E(X4) = 2/5 and E(X5) = 1/5 and we
conclude that E(X) = E(X1 + · · ·+X5) = E(X1)+· · ·+E(X5) = 1+4/5+3/5+2/5+1/5 = 3.

Another possibility is to number the 4 cards that do not have value “A”, and to let
Xj indicate if the jth card is chosen before the “A”. Then Xj = 1 with probability 1/2, so
E(Xj) = 1/2 for each j. We know thatX = 1+X1+X2+X3+X4 (the “1” is there because the
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draw of “A” always counts as 1 draw). So we conclude E(X) = E(1 +X1 +X2 +X3 +X4) =
1 + E(X1) + E(X2) + E(X3) + E(X4) = 1 + 1/2 + 1/2 + 1/2 + 1/2 = 3.

4. Let Xj indicate whether the maximum is bigger than or equal to j. So we have E(X1) = 1
and E(X2) = 1 − (1/4)(1/6) = 23/24 and E(X3) = 1 − (2/4)(2/6) = 5/6 and E(X4) =
1− (3/4)(3/6) = 5/8 and E(X5) = 1− (1)(4/6) = 1/3 and E(X6) = 1− (1)(5/6) = 1/6, So
we conclude that E(X) = E(X1 + · · ·+X6) = E(X1) + · · · + E(X6) = 1 + 23/24 + 5/6 +
5/8 + 1/3 + 1/6 = 47/12.

2


