STAT/MA 41600 In-Class Problem Set #3: August 29, 2016 Solutions by Mark Daniel Ward

Problem Set 3 Answers

1a. The probability is $(.30 + .45)^4 = 81/256 = 0.3164$. **1b.** The probability is .30/(.30 + .45) = 2/5 = 0.40.

2a. The probability is $12/52 + (40/52)(12/52) + (40/52)^2(12/52) + (40/52)^3(12/52) = 18561/28561 = 0.6499$. Alternatively, this is $1 - (40/52)^4 = 18561/28561 = 0.6499$. **2b.** The probability is $(40/52)^4(12/52) = 30000/371293 = 0.0808$. **2c.** The probability is 12/52 + (40/52)(12/51) + (40/52)(39/51)(12/50) + (40/52)(39/51)(38/50)(12/49) = 2759/4165 = 0.6624. Alternatively, this is 1 - (40/52)(39/51)(38/50)(37/49) = 2759/4165 = 0.6624. **2d.** The probability is (40/52)(39/51)(38/50)(37/49) = 2759/4165 = 0.6624.

3. The probability that a role has sum 7 or larger is 1-(1+3+6+10)/216 = 196/216 = 49/54. The probability that a role has sum exactly 7 is 15/216, and the probability that the role has sum strictly larger than 7 is 1 - (1 + 3 + 6 + 10 + 15)/216 = 181/216. Therefore, the desired probability is (15/216)/(15/216 + 181/216) = 15/(15 + 181) = 15/196 = 0.0765.

4a. We have P(A) = 1/2 and P(B) = 1/2 but $P(A \cap B) = 1/3$ so $P(A)P(B) \neq P(A \cap B)$, so A and B are dependent.

4b. We have P(B) = 1/2 and P(C) = 2/3 but $P(B \cap C) = 1/2$ so $P(B)P(C) \neq P(B \cap C)$, so *B* and *C* are dependent. (Alternatively, we could have just noted that *B* is a nontrivial subset of *C*.)

4c. We have P(A) = 1/2 and P(C) = 2/3 and $P(A \cap C) = 1/3$ so $P(A)P(C) = 1/3 = P(A \cap C)$, so A and C are independent.