STAT/MA 41600

In-Class Problem Set #43: December 7, 2015

1. Suppose that the number of errors a student makes on his exam has a Poisson distribution, with an average of 3. Let X denote the number of errors.

a. Find the moment generating function $M_X(t)$ of X.

b. Compute $M'_X(0)$. Hint: You should get 3 for your answer, since $M'_X(0) = \mathbb{E}(X)$.

2. Use X to denote the time (in seconds) that Mary waits for her next text to arrive. Suppose that X has an Exponential distribution, and $\mathbb{E}(X) = 15$.

a. Find the moment generating function $M_X(t)$ of X.

b. Compute $M'_X(0)$. Hint: You should get 15 for your answer, since $M'_X(0) = \mathbb{E}(X)$.

3. Same setup as #2.

a. Compute $M''_X(0)$. This is equal to $\mathbb{E}(X^2)$.

b. Use your solutions to **2b** and **3a** to compute Var(X). Does this agree with the formula that you know, for the variance of an Exponential random variable?

4. Suppose that random variable X has probability mass function $P(X = x) = (27/40)(1/3)^x$, for integers $0 \le x \le 3$.

a. Verify that this is a valid probability mass function.

b. Manually compute the expected value of X.

c. Find the moment generating function $M_X(t)$ of X. (If you think for a moment, it is possible to write $M_X(t)$ without using any summation signs or addition symbols.)

d. Compute $M'_X(0)$. Hint: Your answer should agree with your answer for 4**b**.