STAT/MA 41600 In-Class Problem Set #39 part 2: November 23, 2015 Solutions by Mark Daniel Ward

1. Let $X_1 = 1$ if red appears on the red/green/blue die, or $X_1 = 0$ otherwise. Let $X_2 = 1$ if red appears on the red/blue die, or $X_2 = 0$ otherwise. So $X = X_1 + X_2$. It follows that $Var(X) = Var(X_1) + Var(X_2) + 2 Cov(X_1, X_2)$ We have $Var(X_1) = 2/6 - (2/6)^2 = 2/9$, and $Var(X_2) = 3/6 - (3/6)^2 = 1/4$, and $Cov(X_1, X_2) = 0$ since X_1 and X_2 are independent. So altogether Var(X) = 2/9 + 1/4 + (2)(0) = 17/36.

2. We can write $X = X_1 + \cdots + X_{10}$ where $X_j = 1$ if the *j*th pair has 1 red and 1 green, or $X_j = 0$ otherwise. Then $\mathbb{E}(X_j) = 10/19$ for each *j*. Also, $\operatorname{Var}(X) = \operatorname{Var}(X_1 + \cdots + X_{10}) = \sum_{i=1}^{10} \operatorname{Var}(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j)$. We have $\operatorname{Var}(X_i) = \mathbb{E}(X_i^2) - (\mathbb{E}(X_i))^2 = 10/19 - (10/19)^2 = 90/361$ for each *i*. Also $\operatorname{Cov}(X_i, X_j) = \mathbb{E}(X_i X_j) - \mathbb{E}(X_i)\mathbb{E}(X_j) = (10/19)(9/17) - (10/19)^2 = 10/6137$ for each $i \neq j$. So altogether we have $\operatorname{Var}(X) = (10)(90/361) + (90)(10/6137) = 16200/6137 = 2.64$.

3. Since the joint probability density function is constant, it must be $f_{X,Y}(x,y) = 2/25$ for x, y in the triangle, and $f_{X,Y}(x,y) = 0$ otherwise. We have $\operatorname{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$. Also $\mathbb{E}(XY) = \int_0^5 \int_0^{5-x} (xy)(2/25) \, dy \, dx = 25/12$, and $\mathbb{E}(X) = \int_0^5 \int_0^{5-x} (x)(2/25) \, dy \, dx = 5/3$, and similarly $\mathbb{E}(Y) = 5/3$. So $\operatorname{Cov}(X,Y) = 25/12 - (5/3)^2 = -25/36$.

4. We have $\operatorname{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$. We compute $\mathbb{E}(XY) = \int_0^1 \int_x^1 xy e^{1-x} dy dx = \int_0^1 x e^{1-x} \int_x^1 y \, dy \, dx = \int_0^1 x e^{1-x} (1-x^2)/2 \, dx = \int_0^1 x e^{1-x} (1-x^2)/2 \, dx = \frac{e}{2} \int_0^1 e^{-x} (x-x^3) \, dx = 7 - (5/2)(e) = 0.2043$. Also we compute $\mathbb{E}(X) = \int_0^1 \int_x^1 x e^{1-x} \, dy \, dx = \int_0^1 x e^{1-x} \int_x^1 1 \, dy \, dx = \int_0^1 x e^{1-x} (1-x) \, dx = e \int_0^1 e^{-x} (x-x^2) \, dx = 3 - e = 0.2817$ and $\mathbb{E}(Y) = \int_0^1 \int_x^1 y e^{1-x} \, dy \, dx = \int_0^1 e^{1-x} \int_x^1 y \, dy \, dx = \int_0^1 e^{1-x} (1-x^2)/2 \, dx = \frac{e}{2} \int_0^1 e^{-x} (1-x^2) \, dx = 2 - e/2 = 0.6409$. So we conclude that $\operatorname{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0.2043 - (0.2817)(0.6409) = 0.0238$.