STAT/MA 41600

In-Class Problem Set #32 part 2: November 2, 2015 Solutions by Mark Daniel Ward

1a. We have $P(X + Y < 12) = \int_0^{12} \int_0^{12-x} (1/5)e^{-(1/5)x}(1/5)e^{-(1/5)y} dy dx$. For the inner integral, we focus on the y part of the integrand, and we get: $\int_0^{12-x} (1/5)e^{-(1/5)y} dy = 1 - e^{(-12/5) + (1/5)x}$. So then we have $P(X + Y < 12) = \int_0^{12} (1/5)e^{-(1/5)x}(1 - e^{(-12/5) + (1/5)x}) dx = \int_0^{12} (1/5)e^{-(1/5)x} dx - \int_0^{12} (1/5)e^{-12/5} dx = 1 - e^{-12/5} - (12/5)e^{-12/5} = 1 - (17/5)e^{-12/5} = 0.6916$.

1b. The calculation is the same, but using "a" instead of 12.

We have $P(X + Y < a) = \int_0^a \int_0^{a-x} (1/5)e^{-(1/5)x}(1/5)e^{-(1/5)y} dy dx$. For the inner integral, we focus on the y part of the integrand, and we get: $\int_0^{a-x} (1/5)e^{-(1/5)y} dy = 1 - e^{(-1/5)a+(1/5)x}$. So then we have $P(X+Y < a) = \int_0^a (1/5)e^{-(1/5)x}(1 - e^{(-1/5)a+(1/5)x}) dx = \int_0^a (1/5)e^{-(1/5)x} dx - \int_0^a (1/5)e^{-(1/5)a} dx = 1 - e^{-(1/5)a} - (a/5)e^{-(1/5)a} = 1 - (1 + \frac{a}{5})e^{-(1/5)a}$.

1c. Yes! If we use a = 12 in our answer to **1b**, we get $P(X+Y < 12) = 1 - (1 + \frac{12}{5})e^{-(1/5)12} = 1 - (17/5)e^{-12/5} = 0.6916.$

2a. We have 0 < U < 1, and therefore $-\infty < \ln U < 0$, so we conclude $0 < -\frac{1}{5} \ln U < \infty$. So X takes on positive real values.

2b. For $a \leq 0$, we have $F_X(a) = 0$. For a > 0, we compute $F_X(a) = P(X \leq a) = P(-\frac{1}{5} \ln U \leq a) = P(\ln U \geq -5a) = P(U \geq e^{-5a}) = 1 - e^{-5a}$.

2c. Using the CDF of X from **2b**, we see that X is an Exponential random variable with $\lambda = 5$, i.e., with average 1/5.

3. We have $P(X - Y > 1) = \int_0^\infty \int_{y+1}^\infty e^{-x} e^{-y} dx dy$. For the inner integral, we focus on the x part of the integrand, and we get: $\int_{y+1}^\infty e^{-x} dx = e^{-(y+1)}$. So then we have $P(X - Y > 1) = \int_0^\infty e^{-y} e^{-(y+1)} dy = \int_0^\infty e^{-2y-1} dy = (1/2)e^{-1}$.

Similarly (just switching the roles of x and y), we get $P(Y - X > 1) = (1/2)e^{-1}$. So altogether we have $P(|X - Y| > 1) = (1/2)e^{-1} + (1/2)e^{-1} = e^{-1} = 0.3679$.

4a. We have $P(X < 1) = F_X(1) = 1 - e^{-(1/2)(1)} = 0.3935.$

4b. The probability is $P(X < 1, Y < 1, Z < 1) = P(X < 1)P(Y < 1)P(Z < 1) = (1 - e^{-(1/2)(1)})^3 = 0.0609.$

4c. The probability is $P(X > 1, Y > 1, Z > 1) = P(X > 1)P(Y > 1)P(Z > 1) = (e^{-(1/2)(1)})^3 = 0.2231.$

4d. The probability is $3(1 - e^{-(1/2)(1)})^1(e^{-(1/2)(1)})^2 = 0.4342$.

4e. The probability is $3(1 - e^{-(1/2)(1)})^2 (e^{-(1/2)(1)})^1 = 0.2817$.

4f. The random variable V is a Binomial random variable with parameters n = 3 and $p = 1 - e^{-1/2} = 0.3935$.