STAT/MA 41600 In-Class Problem Set #25: October 16, 2015

1. Suppose that X has probability density function

$$f_X(x) = \begin{cases} x & \text{for } 0 < x < 1, \\ 2 - x & \text{for } 1 < x < 2, \\ 0 & \text{otherwise.} \end{cases}$$

1a. Find $P(X \le 3/4)$.

1b. Find $P(X \le 5/4)$. (Hint: It is not necessary—but it could be easier—to first find the complementary probability.)

1c. Find a formula for the CDF $F_X(x)$. (Hint: It is worthwhile to do this in a piecewise manner, since $f_X(x)$ is defined piecewise. I.e., it is helpful to find $F_X(x)$ for 0 < x < 1 and then to find $F_X(x)$ for 1 < x < 2.)

1d. Do your answers to **a** and **b** each agree with your answer to **c**, in the specific cases x = 3/4 and x = 5/4?

2. Suppose X and Y have a constant joint density on the square with vertices (0,0), (4,0), (4,4), (0,4). **2a.** For 0 < a < 4, find $P(X + Y \le a)$.

2b. For 4 < a < 8, find $P(X + Y \ge a)$. (Then the complement $P(X + Y \le a)$ is easy.)

2c. If you write W = X + Y, the work from **a** and **b** automatically yields an expression for the CDF $F_W(w) = P(W \le w)$ of W. Differentiate this CDF $F_W(w)$ to find the density $f_W(w)$ of W.

3. Suppose X and Y have joint probability density function

$$f_{X,Y}(x,y) = 21e^{-3x-7y}$$

for x > 0 and y > 0; and $f_{X,Y}(x, y) = 0$ otherwise. **3a.** Compute $P(Y \ge X)$. **3b.** Compute $P(Y \le 3X)$.

3c. Compute $P(Y \ge 1/10)$.

4a. In the setup of question **3**, find the probability density function $f_X(x)$ of X.

4b. In the setup of question **3**, find the probability density function $f_Y(y)$ of Y.

4c. Use your answer to 4b to find $P(Y \ge 1/10)$. Does your answer agree with your answer to 3c?