STAT/MA 41600

In-Class Problem Set #17: September 28, 2015

1. Suppose Jessica picks homework problems at random to practice for her midterm exam. She practices until she has solved 5 worthwhile questions, and then she quits after that. Her selections of problems are independent, each with a probability of 0.90 of being worthwhile.

1a. Find the probability that she solves 8 or fewer questions.

1b. Find the conditional probability that she solves 6 or fewer questions, given that she solves 8 or fewer questions.

1c. Find the variance of the total number of questions that she solves.

2. Suppose that 60% of people in Chicago are fans of da Bears. Assume that the fans' preferences are independent. We interview fans until we find the 3rd person who is a fan of da Bears. (This is different than the setup from question #1 of Problem Set 12. Here we need to interview at least 3 people, but in that former question, we interviewed exactly 3 people.) Let X denote the number of people we interview altogether.

2a. Find the probability that X > 6.

2b. Find the conditional probability that X > 6, given that X > 4.

3. Let X₁, X₂, X₃ be independent Geometric random variables, each with expected value 10/7. Let Y be a Negative Binomial random variable, with parameters r = 3 and p = 7/10. Let Z = 3X₁.
3a. Do X₁ + X₂ + X₃ and Y have the same distribution? Why or why not?

3b. Do $X_1 + X_2 + X_3$ and Z have the same distribution? Why or why not?

3c. Do Y and Z have the same distribution? Why or why not?

4. Roll a 6 sided die until you have seen all of the sides as a result. Let X denote the number of rolls required.

4a. Is X a negative binomial random variable? If so, what are the parameters? If not, then why not?

4b. Find $\mathbb{E}(X)$.

Hint: Let X_i denote the number of additional rolls needed until the *i*th new result appears. So $X = X_1 + \cdots + X_6$.