
Implementing Responsiveness in React

1

Introduction

Responsiveness is a part of any complete web application, we have to remember mobile first, and
the importance of prioritizing layouts on smaller devices like cell phones. This is especially
important in commercial applications in which effective rendering of products leads to a good user
experience when accessing the site or web app on a mobile device. Hopefully a good user
experience will lead to a sale of a product or service.

Traditionally, we integrate responsiveness by using key features of HTML/CSS, like Flexbox and
media queries. In this tutorial, you will see how to use JSX to apply styles depending on the status of
the application, and so enable responsiveness in terms of a hamburger menu. This is a small and
specific example, however you can use the techniques presented to add your own extended
strategy for responsive layouts.

1) The Requirement

At higher breakpoints, like a full screen desktop, there is space to display menu options
horizontally, spaced apart on a navigation bar.

The hamburger menu, the lines icon, should discreetly appear when the screen width is less. This
icon should appear at lower breakpoints to save space on smaller screen widths.

There are many styles and icons available to represent the menu bar with a hamburger menu,
current design philosophy is to mute this icon and tuck it into the user interface.

Aside, there are specific references in web design that apply to menu bar icons that operate on an
expand/contract basis.

Implementing Responsiveness in React

2

The typical breakpoint at which the horizontal menu morphs into a hamburger icon? 768 pixels
wide.

At this point, the user focus is entirely on the content of the current page and should be able to see
that content most effectively without any unnecessary additions to the layout.

The hamburger menu is a small, recognized icon that expands when the user clicks it, and opens
the menu bar vertically.

The vertical menu remains visible until the user clicks the hamburger menu again, in which case the
options are hidden, leaving more space on the page.

Implementing Responsiveness in React

3

2) Potential Solution - React Hooks, CSS Style Rules

Let’s start by modifying the Layout component in Layout.js. We will add a specific layout.css file, as
this styling relates only to the layout component. Create this file, layout.css, and may as well keep it
in the pages folder with Layout.js. Make sure to bring it into Layout.js, by importing it.

We need to …

- Add a button to the menu bar to represent the hamburger menu
- Set the state of the button to open or closed, depending on the click status. Open should

display the menu items and closed should hide them.
- Change the style of the nav bar items so that they display vertically at smaller breakpoints

and horizontally at higher breakpoints
- Style the button to disappear at higher breakpoints and become visible at widths below our

breakpoint of 768 pixels
- Dynamically modify the styling based on the click status

The Button

You can use the entity code ≡ for the hamburger menu icon, . We will add this to the
component, Layout.js.

In layout.css, create a style rule for the button.

This styling renders a muted button that blends into the background, and reveals a cursor points
when hovered over, indicating that it is clickable. Initially, this button is hidden.

Now let’s add this button to Layout.js, inside the component.

Implementing Responsiveness in React

4

The State

When the hamburger menu is clicked, the menu options should be visible. Let’s use the React
useState hook to support this.

In Layout.js, import useState,

Now add the useState hook, with state variable isOpen. This hook (and all others) has to be inserted
inside a component, so careful with placing the code.

Next step is to integrate the state with style rules that manipulate the navigation bar’s menu items.

React hooks allow us to use JSX to set a state in the application depending on the status of a
variable. We can use this to turn on and off style rules that apply to the navigation bar. Let’s set the
isOpen Boolean state variable to true initially, and then implement a toggle based on when it is
clicked. This toggles associates or disassociates a class, isOpen, with the nav bar, depending on
the status of the isOpen variable.

Implementing Responsiveness in React

5

This can be used to selectively apply rules, which is exactly what we want, in order to implement
the hamburger menu functionality.

The Style Rules

A Flex container is a good option for a menu bar that toggles between vertical and horizontal
orientation, so let’s add some additional style rules for the nav tag, the ul tag and the li tags – as
these are specific to the layout, we will add them to layout.css.

Flex containers default to
row for flex-direction

You can change this to suit
your font and spacing
requirements

Here, we use this isOpen
style with the isOpen state
variable, modified by media
query

We need a media query to handle smaller breakpoints.

The media query supports the smaller breakpoints by revealing the hamburger icon
button …

 and setting the flex direction of the navigation bar’s ul tag to column instead of
row. The list items are flex items, so these will render vertically, in a column.

Implementing Responsiveness in React

6

The display property is used here as a reset, hiding or showing the ul element, to hide or show the
menu bar options as these are the list items.

Now this should render a responsive menu bar!

