
React, Introduction (Scaffold, Using JSX, Creating Components)

React Tutorial #1, Boiler-plating to Customizing With
Props & Hooks
Welcome to React, one of the most popular libraries supporting JavaScript to create lean,
modularized and effective web pages!

The average time to learn React ranges from 1 month to 6 months, learn meaning become an
experienced react developer. So, consider the weeks we will spend building React sample
applications, an introduction to thinking in components, and familiarization with the concepts and
techniques used in a component based architecture.

Start by installing the React developer tools on your browser, so you can demonstrate what
components have been activated in your application.

Here is what you will be doing in this tutorial:

1) you will use the npx utility, with create-react-app, to scaffold a boiler-plate React
application

2) you will use JSX to represent a variable on your web page
3) you will create your own component and add this to the application
4) you will use the props object to pass data between react components
5) you will use the JavaScript Array map method to create a list of objects
6) you will use JSX to create a list of components, based on one component declaration
7) you will style a React component
8) you will use a hook in React to coordinate changing the state of a variable, with an action in

your application

1 : Scaffolding a React Application
Use the npx tool, to run create-react-app in the node library. This creates a shell application with
React and ReactDom installed, and a package.json file with scripts and dependencies.

Why do we need both React and ReactDOM?

React handles the logic and structure of the components, while ReactDOM takes care of rendering
those components to the web page. This separation of concerns allows React to be used in
different environments (like React Native for mobile apps) by swapping out ReactDOM for a different
rendering engine.

Run npx with create-react-app and the application name. We will build a sample meetings
application, so let’s call this meeting_alerts. The folder/application name should use all lower case.

React, Introduction (Scaffold, Using JSX, Creating Components)

When the scaffolding process is complete, navigate to the folder you have created, in this case
meeting_alerts.

Now open the folder with Visual Studio Code.

This opens up in VSCode.

React, Introduction (Scaffold, Using JSX, Creating Components)

… and now you should clear out all the content that you do not need, and
resolve any errors in the remaining files after the this content has been removed.

In App.css, give the header a new height, say 200px.

When all has been resolved, you should just see the following,

React, Introduction (Scaffold, Using JSX, Creating Components)

Add a heading to the header,

React, Introduction (Scaffold, Using JSX, Creating Components)

2: Using a variable with JSX, Representing JavaScript Content in JSX
Notice the markup being returned by function App? That is JSX. Let’s use a variable instead of the
hard-coded heading text. The variable is included by using the {…} notation, which brings standard
JavaScript into JSX.

3 : Custom Component
Let’s create the header as a component and include it inside the App component.

Create a new file, Header.js, and inside this add the content for the Header component, as follows.

React, Introduction (Scaffold, Using JSX, Creating Components)

Change the App.js file and component, to include the new Header component.

You will notice an error, because the title text is no longer local! We have created a new component,
Header, and referenced a variable defined inside App.js.

This will be fixed in the next step.

React, Introduction (Scaffold, Using JSX, Creating Components)

4: The Props Object - Passing Data between Components
We have defined variable, headingTitle, with the title text for the heading, inside App.js. Yes, this
could be moved to Header.js, but let’s use the title text as an example of how to pass data between
components, as this is definitely required.

Modify App.js to pass the title text to the Header component.

… and modify the Header component to receive this data, through what is termed the props
object.

Now all the errors are resolved.

React, Introduction (Scaffold, Using JSX, Creating Components)

5: Add Styling
Let’s create 2 new components, a Card , used to represent meeting information, and a container to
store multiple such cards, starting with a single card.

React, Introduction (Scaffold, Using JSX, Creating Components)

You can use this image, Purdue Pete, and add it to the public folder where it will be
accessed by reference. We will deal with the button in a bit!

Note the inline styling for the MeetingCard component is specified using a style object, { …},
surrounded by the JSX { … }. Style rules can be integrated in several ways using react, including the
use of a standard style file. Style objects can be created, assigned to variables and applied to
elements.

Add the styles for the card and the card container, as external styling, to App.css,

React, Introduction (Scaffold, Using JSX, Creating Components)

First, add the element of class meetings_container (the flex container represented by the
MeetingList component) to the App component.

We are using the React recommended way of adding components in separate and distinct files, so
make sure to import the MeetingList component into App.js.

Use inspect to investigate the page structure, and you can see that the element of class
meetings_container has been successfully integrated.

React, Introduction (Scaffold, Using JSX, Creating Components)

The Components tab shows the App component, the Header component and the MeetingList
component.

Now add a single Card component to the MeetingList component.

React, Introduction (Scaffold, Using JSX, Creating Components)

… and you should see this,

Now, let’s change the title text before we move
to the next step.
Do you know how?

React, Introduction (Scaffold, Using JSX, Creating Components)

6: Using Iteration in JSX
We have more than 1 meeting(!), so let’s represent the meetings as an array of JavaScript objects,
and we can add these to a new file in the src flolder, meetingData.js.

const meetings = [
 {
 topic: "CIT Monthly Meeting",
 dateTime: "Sept 19th 2024, 2pm-3pm",
 location: "Knoy Hall West Lafayette",
 parking: "Midway Garage",
 },
 {
 topic: "Research In Higher Level Ed",
 dateTime: "September 24th 2024, 1pm-5pm",
 location: "Stuart Buildings, West Lafayette",
 parking: "Street Level",
 },
 {
 topic: "Curriculum Planning",
 dateTime: "October 19th 2024, 4pm-6pm",
 location: "IO 240, Indianapolis",
 parking: "North Street Garage",
 },
];
export default meetings;

Now, use the JavaScript array map method, which returns an object as it iterates over all of the
elements in the array. In this case, the object being returned is a markup entity – a React
component to which is passed the meeting information in the props object.

React, Introduction (Scaffold, Using JSX, Creating Components)

This operates on the content of the list and renders a Card for each item in the list.

Notice, in the code, we are using an index value in the map function

– this is a requirement for React, we have to use a unique value as we reference list content. Where
did this come from? It is directly related to accessing each item in turn, selecting the correct item
and making sure that the correct data is targeted.

React, Introduction (Scaffold, Using JSX, Creating Components)

Now let’s add some specific meeting information for each meeting object in the meeting list. We
already have the meeting object, as it is passed in via props. So, we can use the meeting object and
the dot access operator, to get the information from the object.

This should result in

React, Introduction (Scaffold, Using JSX, Creating Components)

Any questions so far? Is it all wired together? Do you need any explanations?

The next step is the Parking modal.

The parking modal relates to the Meeting object and the Meeting Card, so it can be localized.

First, let’s discuss hooks in React. Hooks were added to React in version 16.8.

Hooks allow components to be notified of changes, and to take action accordingly. There are
multiple such hooks defined by React. Here, we will use the one that connects changing state, with
a React function – useState.

useState integrates a variable with a function used to change the value (state) of the variable. The
variable is given an initial value, and a function to set a new value.

As before, we insert the markup for a modal, and hide/show the content depending on a button
click, or a state variable.

In order to use this hook, we need to include it. The parking modal button is in the MeetingCard
component, so this is an appropriate place to add the registration for useState.

Below, the variable is showModal, and the function that sets it’s value is setShowModal. The initial
value for showModal is false.

const [showModal, setShowModal] = useState(false);

The useState function returns an array, and here we are using array destructuring to assign the
values to showmodal and the setShowModal function, respectively.

React, Introduction (Scaffold, Using JSX, Creating Components)

We have 2 functions that coordinate with the state variable to display or hide the modal,
handleOpenModal and handleCloseModal – these 2 functions set the value of the state variable
to either true or false. You can give them any title so long as they are used correctly!

When the parking button is clicked, the parking modal should open, so we should link the onClick
event to the handleOpenModal function.

This function sets the value of the showModal state variable, to true.

If the showModal variable is true, then the modal should be visible. We can use a shorthand
notation to set the display property to true, for the modal content.

 {showModal && (

 <div …..

Let’s add this content first and then style the modal appropriately.

React, Introduction (Scaffold, Using JSX, Creating Components)

{showModal && (
 <div className="modal-overlay" onClick={handleCloseModal}>
 <div className="modal" onClick={(e) => e.stopPropagation()}>
 <h4>Parking Information</h4>
 <p>{meeting.parking}</p>
 <button onClick={handleCloseModal}>Close</button>
 </div>
 </div>
)}

Within the parking modal content, a close button calls the handleClose function.

 <button onClick={handleCloseModal}>Close</button>

Add the specific styling to the App.css file, feel free to re-style the parking modal !

.modal {
 position: fixed;
 top: 10%;
 left: 50%;
 transform: translate(-50%, -50%);
 background: white;
 padding: 20px;
 border-radius: 8px;
 box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
 width: 300px;
}

.modal-overlay {
 position: fixed;
 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
 background: rgba(0, 0, 0, 0.5);
}

… and now you should see the parking modal become visible on clicking the

parking button - the modal content is displayed.

React, Introduction (Scaffold, Using JSX, Creating Components)

App.css .App {
 text-align: center;
}

.App-header {
 background-color: #282c34;
 display: flex;
 flex-direction: column;
 align-items: center;
 justify-content: center;
 font-size: calc(10px + 2vmin);
 color: white;
 height: 200px;
}

.App-link {
 color: #61dafb;
}

.meeting-card {
 border: 1px solid #ccc;
 border-radius: 8px;
 padding: 16px;
 margin: 16px;

React, Introduction (Scaffold, Using JSX, Creating Components)

 width: 400px;
 box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}

.meetings_container {
 display: flex;
 flex-wrap: wrap;
 flex-direction: row;
}

.modal {
 position: fixed;
 top: 10%;
 left: 50%;
 transform: translate(-50%, -50%);
 background: white;
 padding: 20px;
 border-radius: 8px;
 box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
 width: 300px;
}

.modal-overlay {
 position: fixed;
 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
 background: rgba(0, 0, 0, 0.5);
}

MeetingCard.js import React, { useState } from "react";
import "./App.css";
const MeetingCard = ({ meeting }) => {
 const [showModal, setShowModal] = useState(false);

 const handleOpenModal = () => {
 setShowModal(true);
 };

 const handleCloseModal = () => {
 setShowModal(false);
 };
 return (
 <div className="meeting-card">
 <img
 src="purduepete.jpg"

React, Introduction (Scaffold, Using JSX, Creating Components)

 alt="Purdue Pete"
 style={{
 padding: "10px 20px",
 textAlign: "center",
 color: "goldenrod",
 background: "beige",
 width: "50px",
 }}
 />
 <h3>{meeting.topic}</h3>
 <p>{meeting.dateTime}</p>
 <p>{meeting.location}</p>

 <button onClick={handleOpenModal}>Show Parking Info</button>
 {showModal && (
 <div className="modal-overlay" onClick={handleCloseModal}>
 <div className="modal" onClick={(e) => e.stopPropagation()}>
 <h4>Parking Information</h4>
 <p>{meeting.parking}</p>
 <button onClick={handleCloseModal}>Close</button>
 </div>
 </div>
)}
 </div>
);
};

export default MeetingCard;

