
EJS Tutorial 2 --- Adding SQL Support

1

Introduction
In the last Node/Express/EJS tutorial, you used dummy data from an array, to represent the meetings.

This data is not persisted, if these were real meetings, you would expect them to come from a central

source, like a database. In this tutorial, you will

- add support for a relational database, which is the one with tables! We will use SQLite and

SQLite3, to build the code base we need for the database connection and query. Remember, a

query is how we get data back from a database.

- apply more Bootstrap styling

1) Add dependencies to Support Connecting To a SQLite Database

SQLite and SQLite3 are 2 packages that work together to build the code base for creating and

querying a relational database, using the SQLite framework. SQLite is a database engine built in

C, but embedded in other languages. We will be installing these 2.

Package, body-parser, is a new addition.

➢ npm install sqlite sqlite3 body-parser

As the name indicates, body-parser is a utility package that helps in synthesizing data from

objects, and vice versa. It is middleware in Node.js and is used to parse incoming request bodies

making it easier to handle different types of data sent in HTTP requests. It’s commonly used

with the Express framework. Here are some key features of body-parser, that we will be using

moving forwards with this sample data management project.

• JSON Parsing: Parses JSON data sent in the request body.

• URL-encoded Parsing: Parses URL-encoded data (like form submissions).

• Raw Data Parsing: Parses raw data sent in the request body.

• Text Parsing: Parses text data sent in the request body.

We may as well be aware of body-parser now!

2) Modify Styling To Support A List Of Items, Add Bootstrap Classes

EJS Tutorial 2 --- Adding SQL Support

2

We will be displaying more meetings, so let’s alter the container style in index.ejs, to

wrap the content, and set some breakpoints.

3) Build The Database Support Infrastructure

Now let’s build the database component to use SQLite.

Create a file and a folder as follows, database.js in the root folder, and database, a folder in the public

folder, to store the database we will be creating.

4) Build the database call to create the database with the table, and connect the code

Let’s take this step by step.

In app.js (or your server file, whatever you titled this)

EJS Tutorial 2 --- Adding SQL Support

3

Import the SQLite/SQLite3
components needed to
create and open the
database

Add 2 functions, both of
which need to be seen
outside of the database.js
file – as they are used to
create the database in our
public/database folder

-setupDatabase
-getDbConnection

The export directive makes
these visible outside the
module.

Now add the connection/creation call, using a promise object

EJS Tutorial 2 --- Adding SQL Support

4

Here is the code for the insert, so you can avoid typing:

 INSERT INTO meetings (topic, mandatory, dateTime, location, parking)

 VALUES

 ('CIT Monthly Meeting', 1, 'September 24th 2024, 1pm-5pm', 'KNOY

Hall West Lafayette', 'Park in the West Street Garage, 3rd floor. Venue

opposite front entrance.'),

 ('Research in Higher Level Ed', 0, 'October 5th 2024, 10am-12pm',

'Beresford Building, Room 2, Hall West Lafayette', 'Park in surface lot

300. Venue beside lot.'),

 ('Curriculum Planning', 1, 'October 19th 2024, 4pm-6pm', 'IO240,

Indianapolis', 'Park in North Street Garage, Michigan St. Venue opposite

side of street, 300km North.')

EJS Tutorial 2 --- Adding SQL Support

5

The call to open returns a promise object. You have seen that the then method handles a
successful completion of a task (like opening the DB), and also that then methods can be chained
to add additional consequences of a result.
Here, if the DB can be opened successfully, then we create a table, then we add items to the table.
We will be replicating items here, but no worries as this makes more meetings! This will be fixed
shortly. It serves as a good example of how promises work.

Now, if a database
connection is required, the
next method delivers,
getDbConnection

5) Now we use the two methods we just defined in database.js. At the top of app.js, add the import

for pulling in the functions.

6) Change the way we assimilate the meetings

Now we read from the database, and use a promise object.

EJS Tutorial 2 --- Adding SQL Support

6

The getDBConnection function returns a promise object. We chain a then and a catch to handle passing

that data to index.ejs, and potentially handling an error condition.

Finally, now that we have plugged in the call to create and/or access the database, you should see the

following.

EJS Tutorial 2 --- Adding SQL Support

7

EJS Tutorial 2 --- Adding SQL Support

8

Note all the repetition! This is happening because we have chained a then, to add the same items each

time, to the database. You will be changing this.

Another thing to note for the next tutorial, promise objects and the ensuing .then cascades, can be

difficult to read. ECMAScript 2017 added support for async functions, through an await call. We will be

using these to ‘tidy up’ our database calls moving forwards – as we will need to get items, add items,

update items and delete items, from our database table.

