
Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

1

Introduction
In this tutorial, you will see how the EJS templating engine is brought into your Node.js
application to create dynamic page content, and modularize the code base. You will be
creating a simple application that shows a list of reminders. That list is rendered using EJS,
to selectively display items in a list, and pass values dynamically to the display.

The important things to take from this tutorial are,

1. How to create HTML content with EJS
2. How to implement conditionals with EJS
3. How to implement loops with EJS
4. How to transfer content to EJS templates

EJS syntax takes a bit of getting used to, but the templating structure is not sophisticated.
You will see

• <%=
• %>
• <%-

These form part of the protocol of transferring values to variables, and indicating the
beginning and ending of a process (almost like a function).

1. Getting started – folder structure, package.json, installs

Project Initialization

Create a new folder, ejs-sampler, or other.

Use the npm init -y command to initialize the folder with a package.json file.
Remember, package.json is a key file in modern software development because it
keeps track of all the packages that the application depends on, and stores other
meta-data, like any repositories.

➢ npm init -y

Take note of the main file, like index.js, server.js. Here, we have used the title app.js.

Organization, Folder Structure

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

2

In any significant software development effort, content should be organized so that
it can be easily maintained. Professional software developers expect a ‘folder
protocol’ in which a key concept in software engineering is demonstrated. That key
concept is Separation of Concerns. Creating separate folders for different parts of
the application, supports Separation of Concerns.

Here, Separation of Concerns is about keeping presentation (the user interface)
separate from any business logic, and separate from any routing logic.

Now create the following folder structure

The views folder is one
that keeps all of the
content to be rendered
and displayed on the
client, here this is our
browser, and the
content at localhost.
This folder has 2 sub-
folders, the pages
folder and the partials
folder.

The pages folder will
contain files with an
extension of .ejs
(Embedded JavaScript)
– these files support the
display of dynamic
content and are recognized once EJS is installed as a dependency.

The partials folder will contain segments of HTML with EJS, that appear in multiple pages,
and that can be reused, like a function.

You will be adding files to this folder structure to create a simple application that lists
notes, reminders about meetings (just like in the 212, the 215 and the 312 – I’m low on
material…).

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

3

Install dependencies, support ES6

This application needs express and ejs, and both of these can be installed as
dependencies with npm install. It is a good idea to use the –save flag, which ensures that
the exact version of each is saved to package.json. Note, no need for comma between the
packages, and multiple packages can be installed together – just separate with a space.

➢ npm install express ejs

Optionally, install nodemon (use the -g flag), and add start script,

“start” : “node app.js”

With the start script specified, you can use

➢ npm start

… to start your application.

Important! To add support for the ES6 import statements, add the “type” specification
to your package.json file.

2. Server Code, Creation of ‘home page’ route

Create the server code, using ES6 protocols.

We want to render an .ejs file, not as yet created! This is what the pages/index reference is
below, in the res.render call.

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

4

This is a basic server setup with Node and Express.

Later, we will need to resolve path names in support of ES6. So, we need to add some
middleware. May as well do this now. We will be creating a public folder when we get to the
styling part of this tutorial.

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

5

3. Create the Views

Now create and edit a file, index.ejs, in the pages folder – which is a subfolder of views.
Create 2 others, about.ejs and contact.ejs, while you are doing this, we will add content
later. Here is the folder structure you should have.

This <h1> tag is all we need in here for
starters, we will change the content to
include EJS.

These files are Embedded JavaScript files, and will contain the code we need to render the
content. For now, the Express object will serve the <h1>Reminder Notes</h1> markup only.

This should be rendered then you start the server with,

➢ node app.js

… or your start script.

4. Passing data to the home page

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

6

Now let’s pass data to the index.ejs file!

In the app.js file, modify the call to res.render for the index page. Create a JavaScript
object containing the data to be passed to the .ejs component (index.ejs).

Now, the render method transfers the second parameter, which is an object,

{ data : dataToPass }

 to the .ejs file.

Modify the index.ejs file to accept this data.

Below, you see the assignment part of EJS syntax, <%= …. %>

When this is added to the .ejs file, and the file is rendered, you should see the following.

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

7

This content has been passed from the object, directly to the index.ejs file.

That’s just one object, now let’s add a little more data!

We will create an array of objects, simulating a potential set of data delivered from an API,
or retrieved from a database. We will modify the carrier object used in res.render, to
include an attribute and value pair with the array of objects.

Below, note the array of objects referenced by variable, meetings, represented as
JavaScript objects. Note also that another piece of data is passed to the .ejs file, in the form
of an attribute and it’s value again – this time title, and “Scheduled Meetings”.

Transferring List Content To Views, Using EJS

The data attribute’s value (from the carrier object) is an array, meetings. The title
attribute’s value is a string.

EJS uses the <%= … %> syntax to associate a value with a tag.

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

8

To iterate through items in the JavaScript array, we can use the JavaScript array method,
forEach, with associated anonymous function to handle each of the array objects. Note
that a regular line of JavaScript code is encased in <% …. %>

<% yourList.forEach((item)=> { %>

 <p>

 …….

 <%= item.requiredAttribute %>

 ……..

 </p>

 <% }); %>

EJS <%= syntax to
assign, close with %>

EJS syntax to wrap a line of
JavaScript code, <% … %>

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

9

When you render the code so far, you should see this.

5. Handling Conditional Logic with EJS

Now let’s add another field to the objects being passed to index.ejs, so that the
meeting is only displayed if it is mandatory.

The mandatory attribute can have a Boolean value - true or false. Let’s use this to show
how conditionals are supported with EJS.

Modify index.js as follows, to include the conditional. Only if the meeting mandatory field
is set to true, display the string “Attendance Mandatory!”.

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

10

<% if (condition) { %>

…..

<% } %>

You will see

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

11

6. Using Partials

Partials represent EJS/HTML content that is common to several pages, and can be stored
in a file and reused (included) across all of these pages. The content in a partial represents
a segment of the markup in the application, and can be included in multiple files. This
supports reuse, reduces the code base, and adds uniformity to the appearance of the
application. It also means that the code base is easier to maintain, as only the code in the
partial needs to be changed, if a change is required.

We left home page without a head, and without a footer – so let’s use partials to include
these.

In the partials folder, create some additional files:

- head.ejs, to contain the head part of the document
- footer.ejs, to contain the footer part of the document

Let’s start with head.ejs, the head part of the document. This should be plain HTML, as
would be populated if you used the Emmet abbreviations in VS Code.

Set up head.ejs to have the head part of the document.

Add content to the footer, via footer.ejs

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

12

Add content to the menu, with menu.ejs, to navigate between the home, about and
contact pages, below. We need to add the routes too!

These partials can be included in one or more pages, and used and reused across the
application. How is this done with EJS? With the include directive.

Modify the content of index.ejs to include the partials, as below.

<%- include('../partials/head.ejs') %>

<%- include('../partials/menu.ejs') %>

The reference point is the views/pages folder, so we need to go up one folder

../

And then into the partials folder,

../partials

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

13

Now if you restart the app, you should see an un-styled home page, but now one with a
head and footer.

You can modify the menu placement so that this is inside the body.

Let’s finish by adding the other 2 routes, and reusing the partials to keep everything the
same.

Modify the app.js code to include the other 2 routes, and pass the title of the page to the
respective document.

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

14

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

15

Now, you know how to

- create templating code using EJS
- include partials to promote reuse
- pass data from the server application to the pages that represent the views

Now, let’s integrate some styling, this time with Bootstrap. Bootstrap is one of the most
popular styling frameworks in Web development, but the code base is massive. In the next
tutorial, we will use the CDN (content delivery network), even though we can also do an
npm install on Bootstrap and add it to our project. We will avoid this, to minimize bloat.

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

16

Using Bootstrap
The Bootstrap library is very often used to spin off a professional user interface. However, it
is not easy to use, and customization to suit specific needs can be tricky. As with anything,
once you learn how to use it and practice creating your own designs using Bootstrap, you
will become more fluent with Bootstrap.

Caveat, use of any third party code, Bootstrap or other, exposes the site to cybersecurity
concerns.

In this section, we will tackle the menu bar, the footer and add a formatted heading that
used to be termed a Jumbotron – however this exact control was deprecated. This will
finish this EJS and Node.js tutorial, by adding some styling. Feel free to explore Bootstrap
and add your own content here instead of what is in the tutorial. Also, feel free to add your
own spin on the styling.

All of the Bootstrap styles can be copied from Bootstrap, at https://getbootstrap.com/ .

https://getbootstrap.com/

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

17

Before adding the
styling, create a public
folder, with 2 sub-
folders, images and
css.
See the following
overview:

You have already set the default folder to public, in app.js:

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

18

import path from "path";
import { fileURLToPath } from "url";
….
const __filename = fileURLToPath(import.meta.url); // get the resolved path to the file
const __dirname = path.dirname(__filename); // get the name of the current directory
app.use(express.static(__dirname + "/public")); // make the public folder the default one
…..

This is important because we are pulling in images, and adding a simple style file of our
own.

Here are the images and the style rules. You should place them in their respective folders.

.note {
 width: 400px;
 height: 200px;
 background-color: blanchedalmond;
 padding: 5px;
 border: 3px dashed goldenrod;
}
.note img {
 width: 50px;
 height: 50px;
}

.takenote {
 font-weight: bolder;
 background-color: black;
 color: goldenrod;
}

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

19

The Menu Bar

 https://getbootstrap.com/docs/5.0/components/navbar/
This format uses a hamburger style icon, and expands at wider screen breakpoints. The
style is Bootstrap, and the branding icon is the one given, in the images folder.

<nav class="navbar navbar-expand-lg bg-light">
 <div class="container-fluid">
 <a class="navbar-brand" href="#"
 ><img src="images/purduepeteanvil.jpg" style="width: 30px; height: 30px"
 />
 <button
 class="navbar-toggler"
 type="button"
 data-bs-toggle="collapse"
 data-bs-target="#navbarNav"
 aria-controls="navbarNav"
 aria-expanded="false"
 aria-label="Toggle navigation"
 >

 </button>
 <div class="collapse navbar-collapse" id="navbarNav">
 <ul class="navbar-nav">
 <li class="nav-item">
 Reminders

 <li class="nav-item">
 About

 <li class="nav-item">
 Contact

 </div>
 </div>
</nav>

Replace the code in menu.ejs with this content, and modify to fit the application.

The Footer
The code for the footer is from the link below.

https://getbootstrap.com/docs/5.3/examples/footers/

Replace the code in footer.ejs with this content and modify to fit the application. Note,
class of fixed-bottom places the footer at the end of the viewport.

https://getbootstrap.com/docs/5.0/components/navbar/
https://getbootstrap.com/docs/5.3/examples/footers/

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

20

<footer class="fixed-bottom">
 <nav class="navbar sticky-bottom bg-body-tertiary">
 <div class="container-fluid">

 <img
 src="/images/purduepeteanvil.jpg"
 alt="Logo"
 width="30"
 height="24"
 class="d-inline-block align-text-top"
 />
 Purdue Pete Reminders, Tutorials

 </div>
 </nav>
</footer>

The Jumbotron

The official Bootstrap Jumbotron is deprecated because there are other styles and controls
that give the same result, like the code below.

Add the following code to index.ejs, about.ejs and contact.ejs, before or after the menu
include.

 <div class="mt-4 p-5 bg-warning text-white rounded">

 <h1><%= title %></h1>

 </div>

The title is now set to the value passed in.

The Reminder Note

You should change the class of the paragraph, in index.ejs, to “note” to pull in the style.

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

21

The image is pulled from the images folder.

Now, you should have an example that shows

- how to use EJS basic syntax
- how to pass values between controller code and view documents
- how to set user interface component values
- how to iterate using EJS
- how to use conditional logic with EJS
- how to integrate Bootstrap
- the importance of a folder structure
- how to establish a default folder or directory

Node.js, Express & EJS, Template Engine -- CIT 31300 Professional Web Design

22

